NRI: Collaborative Research: Learning Adaptive Representations for Robust Mobile Robot Navigation from Multi-Modal Interactions

NRI:协作研究:从多模态交互中学习鲁棒移动机器人导航的自适应表示

基本信息

  • 批准号:
    1638072
  • 负责人:
  • 金额:
    $ 33.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-10-01 至 2021-09-30
  • 项目状态:
    已结题

项目摘要

Most existing autonomous systems reason over flat, task-dependent models of the world that do not scale to large, complex environments. This lack of scalability and generalizability is a significant barrier to the widespread adoption of robots for common tasks. This research will advance the state-of-the-art in robot perception, natural language understanding, and learning to develop new models and algorithms that significantly improve the scalability and efficiency of mapping and motion planning in large, complex environments. These contributions will impact the next generation of autonomous systems that interact with humans in many domains, including manufacturing, healthcare, and exploration. Outcomes will include the release of open source software and data, workshops, K-12 STEM outreach efforts, and undergraduate and graduate education in the unique, multidisciplinary fields of perception, natural language understanding, and motion planning.As robots perform a wider variety of tasks within increasingly complex environments, their ability to learn and reason over expressive models of their environment becomes critical. The goal of this research is to develop models and algorithms for learning adaptive, hierarchical environment representations that afford efficient planning for mobility tasks. These representations will take the form of probabilistic models that capture the rich spatial-semantic properties of the robot's environment and are factorable to enable scalable inference. This research will develop algorithms that learn and adapt these representations by fusing knowledge conveyed through human-provided natural language utterances with information extracted from the robot's multimodal sensor streams. This research will develop algorithms that then reason over the complexity of these models in the context of the inferred task, thereby identifying simplifications that enable more efficient robot motion planning.
大多数现有的自主系统都基于扁平的、依赖于任务的世界模型进行推理,这些模型无法扩展到大型、复杂的环境。缺乏可扩展性和通用性是广泛采用机器人执行常见任务的重大障碍。这项研究将推进机器人感知、自然语言理解以及学习开发新模型和算法方面的最新技术,从而显着提高大型复杂环境中绘图和运动规划的可扩展性和效率。这些贡献将影响下一代在许多领域与人类互动的自主系统,包括制造、医疗保健和探索。 成果将包括开源软件和数据的发布、研讨会、K-12 STEM 推广工作以及独特的多学科感知、自然语言理解和运动规划领域的本科生和研究生教育。随着机器人在日益复杂的环境中执行更广泛的任务,它们学习和推理环境表达模型的能力变得至关重要。这项研究的目标是开发用于学习自适应、分层环境表示的模型和算法,为移动任务提供有效的规划。这些表示将采用概率模型的形式,捕获机器人环境的丰富空间语义属性,并可分解以实现可扩展的推理。这项研究将开发算法,通过将人类提供的自然语言表达所传达的知识与从机器人多模态传感器流中提取的信息融合起来,学习和适应这些表示。这项研究将开发算法,然后在推断任务的背景下对这些模型的复杂性进行推理,从而确定能够实现更高效的机器人运动规划的简化方法。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Integrated Benchmarking and Design for Reproducible and Accessible Evaluation of Robotic Agents
机器人代理可重复且可访问评估的集成基准测试和设计
Jointly Learning to Construct and Control Agents using Deep Reinforcement Learning
Multimodal estimation and communication of latent semantic knowledge for robust execution of robot instructions
Language-guided Semantic Mapping and Mobile Manipulation in Partially Observable Environments
部分可观察环境中的语言引导语义映射和移动操作
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Patki, Siddharth;Fahnestock, Ethan;Howard, Thomas M.;Walter, Matthew R.
  • 通讯作者:
    Walter, Matthew R.
Inferring Compact Representations for Efficient Natural Language Understanding of Robot Instructions
推断紧凑表示以有效理解机器人指令的自然语言
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Walter其他文献

3067 – ATR/CHK1/WEE1 DEPENDENCY IN SRSF2-MUTATED MDS/AML
  • DOI:
    10.1016/j.exphem.2024.104389
  • 发表时间:
    2024-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Samuli Eldfors;Sumit Rai;Vineet Sharma;Tareq Hossan;Claudia Cabrera;Amy Bertino;Angelique Gilbert;Matthew Walter;Kimmo Porkka;Timothy Graubert
  • 通讯作者:
    Timothy Graubert
Disaster vulnerability hotspots in the Portland metro-region: Converging indices for equitable resilience
波特兰都会区的灾害脆弱性热点:用于公平韧性的融合指标
  • DOI:
    10.1016/j.crm.2025.100714
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    5.000
  • 作者:
    Idowu Ajibade;Matthew Walter;Jason Sauer;Aswatha Raghunathasami;James M. Done;Paul Loikith;Chris Lower;Heejun Chang;Arun Pallathadka;Mae E. Sowards;Ming Ge
  • 通讯作者:
    Ming Ge
Non-linear spectral unmixing for monitoring rapidly salinizing coastal landscapes
用于监测快速盐碱化沿海地貌的非线性光谱解混
  • DOI:
    10.1016/j.rse.2025.114642
  • 发表时间:
    2025-03-15
  • 期刊:
  • 影响因子:
    11.400
  • 作者:
    Manan Sarupria;Rodrigo Vargas;Matthew Walter;Jarrod Miller;Pinki Mondal
  • 通讯作者:
    Pinki Mondal

Matthew Walter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Walter', 18)}}的其他基金

Doctoral Consortium at the 2018 International Conference on Robotics and Automation (ICRA)
2018年机器人与自动化国际会议(ICRA)博士联盟
  • 批准号:
    1828170
  • 财政年份:
    2018
  • 资助金额:
    $ 33.27万
  • 项目类别:
    Standard Grant
NRI: INT: COLLAB: Shared Autonomy for Unstructured Underwater Environments through Vision and Language
NRI:INT:COLLAB:通过视觉和语言实现非结构化水下环境的共享自治
  • 批准号:
    1830660
  • 财政年份:
    2018
  • 资助金额:
    $ 33.27万
  • 项目类别:
    Standard Grant

相似海外基金

NRI/Collaborative Research: Robotic Disassembly of High-Precision Electronic Devices
NRI/合作研究:高精度电子设备的机器人拆卸
  • 批准号:
    2422640
  • 财政年份:
    2024
  • 资助金额:
    $ 33.27万
  • 项目类别:
    Standard Grant
NRI/Collaborative Research: Robust Design and Reliable Autonomy for Transforming Modular Hybrid Rigid-Soft Robots
NRI/合作研究:用于改造模块化混合刚软机器人的稳健设计和可靠自主性
  • 批准号:
    2327702
  • 财政年份:
    2023
  • 资助金额:
    $ 33.27万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Understanding Underlying Risks and Sociotechnical Challenges of Powered Wearable Exoskeleton to Construction Workers
合作研究:NRI:了解建筑工人动力可穿戴外骨骼的潜在风险和社会技术挑战
  • 批准号:
    2410255
  • 财政年份:
    2023
  • 资助金额:
    $ 33.27万
  • 项目类别:
    Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
  • 批准号:
    2348839
  • 财政年份:
    2023
  • 资助金额:
    $ 33.27万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Reducing Falling Risk in Robot-Assisted Retail Environments
合作研究:NRI:降低机器人辅助零售环境中的跌倒风险
  • 批准号:
    2132936
  • 财政年份:
    2022
  • 资助金额:
    $ 33.27万
  • 项目类别:
    Standard Grant
NRI/Collaborative Research: Robust Design and Reliable Autonomy for Transforming Modular Hybrid Rigid-Soft Robots
NRI/合作研究:用于改造模块化混合刚软机器人的稳健设计和可靠自主性
  • 批准号:
    2133019
  • 财政年份:
    2022
  • 资助金额:
    $ 33.27万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Remotely Operated Reconfigurable Walker Robots for Eldercare
合作研究:NRI:用于老年护理的远程操作可重构步行机器人
  • 批准号:
    2133075
  • 财政年份:
    2022
  • 资助金额:
    $ 33.27万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Integration of Autonomous UAS in Wildland Fire Management
合作研究:NRI:自主无人机在荒地火灾管理中的整合
  • 批准号:
    2132798
  • 财政年份:
    2022
  • 资助金额:
    $ 33.27万
  • 项目类别:
    Standard Grant
NRI/Collaborative Research: Robot-Assisted Feeding: Towards Efficient, Safe, and Personalized Caregiving Robots
NRI/合作研究:机器人辅助喂养:迈向高效、安全和个性化的护理机器人
  • 批准号:
    2132847
  • 财政年份:
    2022
  • 资助金额:
    $ 33.27万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: Reducing Falling Risk in Robot-Assisted Retail Environments
合作研究:NRI:降低机器人辅助零售环境中的跌倒风险
  • 批准号:
    2132937
  • 财政年份:
    2022
  • 资助金额:
    $ 33.27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了