Methods for generating High Precision Digital Maps using Circular Arc Splines
利用圆弧样条生成高精度数字地图的方法
基本信息
- 批准号:225923277
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2012
- 资助国家:德国
- 起止时间:2011-12-31 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Arc splines, i.e. curves consisting of circular arcs and straight line segments, provide offset and distance calculations in a closed form and allow a compact representation. Thus, their usage for representing lane courses in high precision digital maps has proven its worth in recent research projects.However, this application implicates modelling, theoretical and algorithmic requirements of the arc spline approximation, which have hardly been considered until now. Current approaches for fitting arc splines subject to a minimal number of segments deal with the supremum norm - without any smoothing in a least squares manner ¿ and do not consider any further constraints, such as curvature restrictions. Also, fitting of cyclic structures and dealing with crossings and self-intersections have to be investigated. The resulting methods shall provide a solid basis for a completely automatic map development supplying good scalability properties.Therefore, the submitted project aims to develop a novel and generalized approach to arc spline fitting satisfying the algorithmic and theoretical requirements deduced from the application.
圆弧样条线,即由圆弧和直线段组成的曲线,以闭合形式提供偏移和距离计算,并允许紧凑表示。因此,它们在高精度数字地图中表示车道路线的应用在最近的研究项目中已经证明了它的价值。然而,这种应用涉及到弧样条近似的建模、理论和算法要求,到目前为止几乎没有考虑到这一点。目前用最少分段数来拟合圆弧样条线的方法处理的是上确界范数,而不是以最小二乘的方式进行任何光顺,并且没有考虑任何进一步的约束,例如曲率限制。此外,还必须研究循环结构的拟合以及交叉和自交的处理。所得到的方法将为全自动地图开发提供良好的可扩展性。因此,提交的项目旨在开发一种新的、通用的圆弧样条拟合方法,以满足应用中推导出的算法和理论要求。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal arc spline approximation
最佳圆弧样条近似
- DOI:10.1016/j.cagd.2014.02.011
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:G. Maier
- 通讯作者:G. Maier
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Georg Maier其他文献
Dr. Georg Maier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
A platform for rapidly generating live attenuated enterovirus vaccines
快速生成减毒肠道病毒活疫苗的平台
- 批准号:
24K02286 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
SBIR Phase I: CAS: A light-based, energy-generating, carbon removal process
SBIR 第一阶段:CAS:基于光的能量产生碳去除过程
- 批准号:
2335596 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
2022BBSRC-NSF/BIO Generating New Network Analysis Tools for Elucidating the Functional Logic of 3D Vision Circuits of the Drosophila Brain
2022BBSRC-NSF/BIO 生成新的网络分析工具来阐明果蝇大脑 3D 视觉电路的功能逻辑
- 批准号:
BB/Y000234/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Generating green hydrogen from mining wastes
从采矿废物中产生绿色氢气
- 批准号:
IM240100202 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Mid-Career Industry Fellowships
3D Diffusion Models for Generating and Understanding 3D Scenes
用于生成和理解 3D 场景的 3D 扩散模型
- 批准号:
DP240101926 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Automated, Scalable, and Machine Learning-Driven Approach for Generating and Optimizing Scientific Application Codes
用于生成和优化科学应用代码的自动化、可扩展且机器学习驱动的方法
- 批准号:
23K24856 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Identification a novel bone-generating macrophage subset and their molecular mechanisms.
鉴定一种新型的骨生成巨噬细胞亚群及其分子机制。
- 批准号:
24K19848 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Large-Scale, Sustainable, Nutrient-Dense MicroVeg: Generating Health Evidence & Production Capacity to Support Incorporation into UK Diet
大规模、可持续、营养丰富的微型蔬菜:生成健康证据
- 批准号:
10072736 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D
Generating evidence for nature-based strategies to reduce loneliness
为基于自然的减少孤独感的策略提供证据
- 批准号:
FT220100857 - 财政年份:2023
- 资助金额:
-- - 项目类别:
ARC Future Fellowships
Co-creation between content-generating AI and humans based on deep learning
基于深度学习的内容生成人工智能与人类的共同创造
- 批准号:
23K04201 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




