Nonlocal Density Functional Theory of Molecules and Solids

分子和固体的非局域密度泛函理论

基本信息

  • 批准号:
    1640584
  • 负责人:
  • 金额:
    $ 16.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2018-05-31
  • 项目状态:
    已结题

项目摘要

Jianmin Tao of the University of Pennsylvania is supported by the Chemical Theory, Models and Computational Methods program in the Chemistry Division to develop improved methods for density functional theory (DFT). In the computer-aided design of electronic materials, devices, as well as chemical and physical processes, accurate prediction of electronic properties plays a decisive role. While many wave function-based methods are highly accurate, their computational costs are too expensive to be generally useful for practical applications. For large many-atom systems, DFT is the only method with both the required accuracy and efficiency and for that reason it is the most widely used electronic structure method. However, commonly-used density functionals are unable to achieve universal accuracy. Tao and coworkers focus on developing functionals with a wider range of applicability. These functionals are being used to study the properties of diverse systems such as (water) clusters and light-emitting oligomers and polymers. The work involves both method development and numerical application. The project also includes summer outreach programs aimed primarily at undergraduates.The goal of this research project is the development and application of nonlocal density functionals (DFT), including a new nonlocal correlation energy functional for long-range van der Waals interactions. The focus of this effort is on solving or mitigating some long-standing difficulties that commonly-used density functionals encounter. A major outstanding problem for DFT methodology is that a density functional may be accurate for one or more classes of systems, but not for all systems, or for one or more properties, but not for all properties. A goal of this project is to develop a density functional with universal accuracy and wider applicability so that diverse chemical and physical problems can be solved on the same footing, with the same density functional. Such a density functional must be nonlocal, because the nature of the Coulomb interaction is nonlocal. Undergraduates, graduate students and postdocs are involved in various aspects of this project.
Jianmin Tao of the University of Pennsylvania is supported by the Chemical Theory, Models and Computational Methods program in the Chemistry Division to develop improved methods for density functional theory (DFT). In the computer-aided design of electronic materials, devices, as well as chemical and physical processes, accurate prediction of electronic properties plays a decisive role. While many wave function-based methods are highly accurate, their computational costs are too expensive to be generally useful for practical applications. For large many-atom systems, DFT is the only method with both the required accuracy and efficiency and for that reason it is the most widely used electronic structure method. However, commonly-used density functionals are unable to achieve universal accuracy. Tao and coworkers focus on developing functionals with a wider range of applicability. These functionals are being used to study the properties of diverse systems such as (water) clusters and light-emitting oligomers and polymers. The work involves both method development and numerical application. The project also includes summer outreach programs aimed primarily at undergraduates.The goal of this research project is the development and application of nonlocal density functionals (DFT), including a new nonlocal correlation energy functional for long-range van der Waals interactions. The focus of this effort is on solving or mitigating some long-standing difficulties that commonly-used density functionals encounter. A major outstanding problem for DFT methodology is that a density functional may be accurate for one or more classes of systems, but not for all systems, or for one or more properties, but not for all properties. A goal of this project is to develop a density functional with universal accuracy and wider applicability so that diverse chemical and physical problems can be solved on the same footing, with the same density functional. Such a density functional must be nonlocal, because the nature of the Coulomb interaction is nonlocal. Undergraduates, graduate students and postdocs are involved in various aspects of this project.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jianmin Tao其他文献

Properties of the exchange hole under an appropriate coordinate transformation
适当坐标变换下交换孔的性质
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianmin Tao;M. Springborg;J. Perdew
  • 通讯作者:
    J. Perdew
Performance of a nonempirical meta-generalized gradient approximation density functional for excitation energies.
激发能的非经验元广义梯度近似密度函数的性能。
Unravelling the gene regulatory network linking red leaf and red flesh traits in teinturier grape
解析将染色葡萄(teinturier grape)中红叶和红肉性状相关联的基因调控网络
  • DOI:
    10.1016/j.jplph.2025.154488
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    4.100
  • 作者:
    Haoran Li;Yi Zhang;Wen Zhang;Chenxu Sun;Liyuan Huang;Yang Dong;Yaxin Yang;Hui Li;Huan Zheng;Jianmin Tao
  • 通讯作者:
    Jianmin Tao
Bisub2/subSsub3/sub/rGO nanocomposites with covalent heterojunctions as a high-performance aqueous zinc ion battery material
具有共价异质结的双亚硼/亚碲化铋/还原氧化石墨烯纳米复合材料作为高性能水系锌离子电池材料
  • DOI:
    10.1016/j.ceramint.2023.04.043
  • 发表时间:
    2023-07-01
  • 期刊:
  • 影响因子:
    5.600
  • 作者:
    Shaohua Zhang;Chun Lin;Jiefeng Ye;Dongni Zhao;Yue Chen;Jian-Min Zhang;Jianmin Tao;Jiaxin Li;Yingbin Lin;Stijn F.L. Mertens;Oleg V. Kolosov;Zhigao Huang
  • 通讯作者:
    Zhigao Huang
Modeling spin-forbidden monomer self-initiation reactions in spontaneous free-radical polymerization of acrylates and methacrylates.
模拟丙烯酸酯和甲基丙烯酸酯自发自由基聚合中的自旋禁止单体自引发反应。
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Shi Liu;S. Srinivasan;Jianmin Tao;M. Grady;M. Soroush;A. Rappe
  • 通讯作者:
    A. Rappe

Jianmin Tao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jianmin Tao', 18)}}的其他基金

Nonlocal density functional theory of molecules and solids
分子和固体的非局域密度泛函理论
  • 批准号:
    1760814
  • 财政年份:
    2018
  • 资助金额:
    $ 16.53万
  • 项目类别:
    Standard Grant
Nonlocal Density Functional Theory of Molecules and Solids
分子和固体的非局域密度泛函理论
  • 批准号:
    1261918
  • 财政年份:
    2014
  • 资助金额:
    $ 16.53万
  • 项目类别:
    Standard Grant

相似海外基金

Non-Born-Oppenheimer Effects in the Framework of Multicomponent Time-Dependent Density Functional Theory
多分量时变密度泛函理论框架中的非玻恩奥本海默效应
  • 批准号:
    2415034
  • 财政年份:
    2024
  • 资助金额:
    $ 16.53万
  • 项目类别:
    Continuing Grant
Goldilocks convergence tools and best practices for numerical approximations in Density Functional Theory calculations
密度泛函理论计算中数值近似的金发姑娘收敛工具和最佳实践
  • 批准号:
    EP/Z530657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.53万
  • 项目类别:
    Research Grant
Density Functional Theory of Electronic Structure
电子结构密度泛函理论
  • 批准号:
    2344734
  • 财政年份:
    2024
  • 资助金额:
    $ 16.53万
  • 项目类别:
    Standard Grant
Development of the pair-density functional theory for superconductors
超导体对密度泛函理论的发展
  • 批准号:
    23K03250
  • 财政年份:
    2023
  • 资助金额:
    $ 16.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Enabling the Accurate Simulation of Multi-Dimensional Core-Level Spectroscopies in Molecular Complexes using Time-Dependent Density Functional Theory
职业:使用瞬态密度泛函理论实现分子复合物中多维核心级光谱的精确模拟
  • 批准号:
    2337902
  • 财政年份:
    2023
  • 资助金额:
    $ 16.53万
  • 项目类别:
    Standard Grant
Exploring Properties of the Inner Crust of Neutron Stars Through Band Theory Calculations Based on Superfluid Density Functional Theory
基于超流体密度泛函理论的能带理论计算探索中子星内壳的性质
  • 批准号:
    23K03410
  • 财政年份:
    2023
  • 资助金额:
    $ 16.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Machine-Aided General Framework for Fluctuating Dynamic Density Functional Theory (MAGFFDDFT)
波动动态密度泛函理论的机器辅助通用框架 (MAGFFDDFT)
  • 批准号:
    EP/X038645/1
  • 财政年份:
    2023
  • 资助金额:
    $ 16.53万
  • 项目类别:
    Research Grant
Density Functional Theory of Molecular Fragments: Strong Electron Correlation Beyond Density Functional Approximations
分子片段的密度泛函理论:超越密度泛函近似的强电子相关性
  • 批准号:
    2306011
  • 财政年份:
    2023
  • 资助金额:
    $ 16.53万
  • 项目类别:
    Standard Grant
Aiming for Chemical Accuracy in Ground-state Density Functional Theory
追求基态密度泛函理论的化学准确性
  • 批准号:
    2154371
  • 财政年份:
    2022
  • 资助金额:
    $ 16.53万
  • 项目类别:
    Continuing Grant
Linear and nonlinear exciton dynamics with time-dependent density-functional theory
具有瞬态密度泛函理论的线性和非线性激子动力学
  • 批准号:
    2149082
  • 财政年份:
    2022
  • 资助金额:
    $ 16.53万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了