NSF/FDA SIR: 3D Cell Culture Models as Regulatory Tools for Screening Macrophage Responses to Polymer Wear Debris.

NSF/FDA SIR:3D 细胞培养模型作为筛选巨噬细胞对聚合物磨损碎片反应的监管工具。

基本信息

项目摘要

Non-technical: This award under the NSF/FDA Scholar-in-Residence program by the Biomaterials program in the Division of Materials Research to University of Michigan Ann Arbor is to design and test a 3D hydrogel model for studying interactions between immune cells and microscopic particles produced by the wear and tear of medical implants in the body. The use of implants has been expanding to younger and more active patient populations. Though effective in restoring joint motion and enabling patient independence, joint implants have a finite lifespan because of their surfaces breakdown, and body's inflammatory response to microscopic particles produced by the wear and tear of these implants. This project will develop advanced methods to study how inflammatory cells interact with wear particles, with the goal of informing the development of more robust and thorough standards for predicting and categorizing the biological response to new implant materials. The project team has extensive experience in fabricating 3D environments mimicking physiological conditions necessary that can be used to understand the cellular mechanisms of inflammation. The proposed studies present an opportunity for collaborative research among academic, government and industrial research labs benefitting public health and safety.Technical: The goal of this one-year Scholar-in-Residence award is to design and test 3D tissue engineered models in evaluating macrophage response and inflammation to polymeric wear debris characteristic of implant devices. Use of such implants (Class II special controls) can result in long-term complications including chronic inflammation and osteolysis. Polymeric wear debris generated by normal use has been identified as a primary factor determining device lifetime, and therefore new wear-resistant polymers have been introduced to increase the longevity of these implants. Rigorous standards and testing are necessary to preserve patient safety, and this project will create 3D biomimetic tissue models to capture physiological responses in vitro. This 3D model is expected to recapitulate the inflammatory response in the context of the full range of stimuli in the extracellular microenvironment. Therefore the intellectual merit of the project is based on providing an advanced tissue model for testing the role of material properties on wear particle bioactivity, bridging the current gap that exists between simple 2D in vitro models and animal models or clinical trials. The specific aims include: 1) develop a 3D engineered tissue model with maximum sensitivity and selectivity to characterize cell response to polymeric wear debris; and 2) apply engineered model to study the relationship between physiochemical properties of wear debris generated from selected polymers with macrophage response. Specifically, wear debris from polyether ether ketone and polycarbonate urethane will be compared against ultra-high molecular weight polyethylene for markers of macrophage activation and inflammatory response, as determined by particle concentration, size, shape, surface texture, surface charge, and polarity. The broader impact of this project is its contribution in developing the fundamental understanding of how material properties determine biological responses. In addition, this study is expected to meet the growing needs at FDA for better model systems in evaluating biomaterials. Such a system addresses patient safety and efficacy issues regarding implant success and potentially reduces costs of new device development by providing a less burdensome and more rapid method for material testing, compared to in vivo models or retrieved explants.
非技术性:该奖项由密歇根大学安阿伯材料研究部的生物材料项目授予NSF/FDA驻校学者计划,旨在设计和测试一种3D水凝胶模型,用于研究免疫细胞与体内医疗植入物磨损产生的微观颗粒之间的相互作用。植入物的使用已扩展到更年轻和更活跃的患者人群。虽然有效地恢复关节运动和使患者独立,关节植入物具有有限的寿命,因为它们的表面分解,和身体的炎症反应的微观颗粒产生的磨损和撕裂这些植入物。该项目将开发先进的方法来研究炎症细胞如何与磨损颗粒相互作用,目的是为开发更强大和全面的标准提供信息,以预测和分类对新植入材料的生物反应。该项目团队在制造模拟生理条件的3D环境方面拥有丰富的经验,可用于了解炎症的细胞机制。这些研究为学术界、政府和工业研究实验室之间的合作研究提供了一个机会,有利于公众健康和安全。技术:这项为期一年的奖学金的目标是设计和测试3D组织工程模型,以评估巨噬细胞对植入装置的聚合物磨损碎屑特性的反应和炎症。使用此类植入物(II类特殊对照)可能导致长期并发症,包括慢性炎症和骨质溶解。正常使用产生的聚合物磨屑已被确定为决定器械寿命的主要因素,因此已引入新的耐磨聚合物以延长这些植入物的寿命。严格的标准和测试是必要的,以保护患者的安全,该项目将创建3D仿生组织模型,以捕捉体外生理反应。该3D模型预计将在细胞外微环境中的全范围刺激的背景下重现炎症反应。因此,该项目的智力价值是基于提供一种先进的组织模型,用于测试材料特性对磨损颗粒生物活性的作用,弥合目前简单的2D体外模型与动物模型或临床试验之间存在的差距。具体目标包括:1)开发具有最大灵敏度和选择性的3D工程组织模型,以表征细胞对聚合物磨损碎屑的反应; 2)应用工程模型研究由选定聚合物产生的磨损碎屑的理化性质与巨噬细胞反应之间的关系。具体而言,将聚醚醚酮和聚碳酸酯聚氨酯的磨屑与超高分子量聚乙烯的巨噬细胞活化和炎症反应标志物进行比较,通过颗粒浓度、尺寸、形状、表面纹理、表面电荷和极性确定。这个项目的更广泛的影响是它在发展的基本理解的材料特性如何决定生物反应的贡献。此外,本研究预计将满足FDA对评估生物材料的更好模型系统日益增长的需求。与体内模型或取出的外植体相比,这种系统解决了关于植入成功的患者安全性和有效性问题,并通过提供更少负担和更快速的材料测试方法来潜在地降低新器械开发的成本。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jan Stegemann其他文献

Modular low-cost 3D printed setup for experiments with NV centers in diamond
用于金刚石 NV 中心实验的模块化低成本 3D 打印装置
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Jan Stegemann;Marina Peters;L. Horsthemke;Nicole Langels;P. Glösekötter;S. Heusler;M. Gregor
  • 通讯作者:
    M. Gregor

Jan Stegemann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jan Stegemann', 18)}}的其他基金

NSF/FDA SIR: Three-Dimensional In Vitro Modeling of Interactions Between Orthopedic Wear Particles, Biofilm, and Macrophages
NSF/FDA SIR:骨科磨损颗粒、生物膜和巨噬细胞之间相互作用的三维体外建模
  • 批准号:
    1937689
  • 财政年份:
    2019
  • 资助金额:
    $ 9.78万
  • 项目类别:
    Standard Grant
NSF/FDA SIR: Impact of Mechanotransduction in Polymer Microparticle-Induced Macrophage Inflammation and Osteolysis
NSF/FDA SIR:力传导对聚合物微粒诱导的巨噬细胞炎症和骨质溶解的影响
  • 批准号:
    1743665
  • 财政年份:
    2018
  • 资助金额:
    $ 9.78万
  • 项目类别:
    Standard Grant
I-Corps: Matrix-Enhanced Delivery of Cell Therapy
I-Corps:基质增强细胞疗法的传递
  • 批准号:
    1242421
  • 财政年份:
    2012
  • 资助金额:
    $ 9.78万
  • 项目类别:
    Standard Grant
NSF/FDA SIR: 3D Engineered Tissue Models for In Vitro Safety Testing of Nanoparticles
NSF/FDA SIR:用于纳米颗粒体外安全测试的 3D 工程组织模型
  • 批准号:
    1237549
  • 财政年份:
    2012
  • 资助金额:
    $ 9.78万
  • 项目类别:
    Standard Grant

相似国自然基金

FDA上市药物库筛选鉴定靶向治疗ARID1A缺陷型结直肠癌的合成致死效应及分子机制研究
  • 批准号:
    82373165
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
多维互质结构FDA雷达稀疏空时距自适应处理研究
  • 批准号:
    61771317
  • 批准年份:
    2017
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
基于FDA标记畸胎瘤细胞联合人胎盘屏障体外模型建立中药胚胎毒性评价体系的研究
  • 批准号:
    81573740
  • 批准年份:
    2015
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF/FDA SiR: Pulse Oximetry Measurement Errors Correlated with Patient Skin Pigmentation: Optical Mechanisms and Effect Multipliers
NSF/FDA SiR:与患者皮肤色素沉着相关的脉搏血氧饱和度测量误差:光学机制和效应乘数
  • 批准号:
    2229356
  • 财政年份:
    2023
  • 资助金额:
    $ 9.78万
  • 项目类别:
    Standard Grant
NSF FDA/SiR: Development of eeDAP microscopy platform software, validation data, and statistical methods to assess performance of candidate Software as a Medical Device (SaMD)
NSF FDA/SiR:开发 eeDAP 显微镜平台软件、验证数据和统计方法,以评估候选软件作为医疗设备 (SaMD) 的性能
  • 批准号:
    2326317
  • 财政年份:
    2023
  • 资助金额:
    $ 9.78万
  • 项目类别:
    Standard Grant
NSF/FDA SiR: A Nonclinical Testing Tool for Wearable Photoplethysmography-Based Blood Pressure Monitoring Devices
NSF/FDA SiR:用于基于光电体积描记法的可穿戴血压监测设备的非临床测试工具
  • 批准号:
    2325722
  • 财政年份:
    2023
  • 资助金额:
    $ 9.78万
  • 项目类别:
    Standard Grant
NSF/FDA SiR: Validation and Standardization of Melanometry as a Quantitative Tool for Clinical Evaluation of Racial Disparities in Biophotonic Devices
NSF/FDA SiR:黑素测定法作为生物光子设备种族差异临床评估定量工具的验证和标准化
  • 批准号:
    2326485
  • 财政年份:
    2023
  • 资助金额:
    $ 9.78万
  • 项目类别:
    Standard Grant
NSF/FDA SIR: Robust, Reliable, and Trustworthy Regulatory Science Tool for Stroke Recovery Assessment using Hybrid Brain-Muscle Functional Coupling Analysis
NSF/FDA SIR:使用混合脑-肌肉功能耦合分析进行中风恢复评估的稳健、可靠且值得信赖的监管科学工具
  • 批准号:
    2229697
  • 财政年份:
    2022
  • 资助金额:
    $ 9.78万
  • 项目类别:
    Standard Grant
NSF/FDA SIR: 3D Human Stem Cell Cardiac Model for Cardiac Electrophysiology Medical Device Safety Assessment
NSF/FDA SIR:用于心脏电生理学医疗器械安全评估的 3D 人体干细胞心脏模型
  • 批准号:
    2129369
  • 财政年份:
    2022
  • 资助金额:
    $ 9.78万
  • 项目类别:
    Standard Grant
NSF/FDA SIR: Towards the Establishment of a Validation Framework for Wearable Motion Analysis Systems: Development and Evaluation of an Open-Design Sync Platform
NSF/FDA SIR:建立可穿戴运动分析系统的验证框架:开放式设计同步平台的开发和评估
  • 批准号:
    2229538
  • 财政年份:
    2022
  • 资助金额:
    $ 9.78万
  • 项目类别:
    Standard Grant
NSF/FDA SIR: Assessing the Photocytotoxicity and Photochemistry of New Emerging Fluorophores
NSF/FDA SIR:评估新兴荧光团的光细胞毒性和光化学
  • 批准号:
    2037815
  • 财政年份:
    2021
  • 资助金额:
    $ 9.78万
  • 项目类别:
    Standard Grant
NSF/FDA SIR: Designing for Degradation: A framework for Predicting in vivo Degradation and Mechanical Property Changes in Degradable Polymers
NSF/FDA SIR:降解设计:预测可降解聚合物体内降解和机械性能变化的框架
  • 批准号:
    2129615
  • 财政年份:
    2021
  • 资助金额:
    $ 9.78万
  • 项目类别:
    Standard Grant
NSF/FDA SIR: Numerical heart model for irreversible electroporation ablation
NSF/FDA SIR:不可逆电穿孔消融的数字心脏模型
  • 批准号:
    2129626
  • 财政年份:
    2021
  • 资助金额:
    $ 9.78万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了