EARS: SpecSense: Bringing Spectrum Sensing to the Masses

EARS:SpecSense:将频谱传感带给大众

基本信息

  • 批准号:
    1642965
  • 负责人:
  • 金额:
    $ 80万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-10-01 至 2021-09-30
  • 项目状态:
    已结题

项目摘要

With the explosion of mobile data, there is a growing realization that the radio frequency spectrum must be treated as an important resource that is in limited supply. Policy makers and researchers alike are promoting various forms of spectrum sharing models to improve spectrum utilization. Just like any other resource with mismatched demand and supply, all steps towards better utilization of radio spectrum have also increased the need for large scale spectrum monitoring. This serves two key purposes: (i) it helps identify available spectrum opportunities, making spectrum sharing systems more effective, (ii) it can help us develop deeper understanding of spectrum usage and demand over time and space. Large-scale spectrum monitoring can feed into multitudes of 'spectrum-aware' applications forming an entire ecosystem of spectrum data, analytics and apps. The proposed project develops an end-to-end enabling platform called SpecSense to support this vision. SpecSense (i) crowdsources spectrum monitoring using low-cost, low-power custom-designed hardware, and (ii) provides necessary library and interface support for spectrum-aware apps via a central spectrum server/database platform. This project is expected to foster interest in spectrum data marketplaces facilitated by crowdsourced spectrum sensing. This can engender commercial interests in various aspects of the spectrum data ecosystem. In many fields, e.g., healthcare, education, Internet-of-Things, there is a tremendous need for mobile bandwidth and innovation is stunted due to a lack of bandwidth. Success in this project will drive such innovations. The project will also contribute to various educational activities for students with a range of academic preparations.This project addresses several of the core intellectual challenges in developing SpecSense, viz., (1) Exploration of FPGA-based sensors where sensing algorithms are built into the FPGA, with accompanying tools to automatically implement and optimize these algorithms so that they provide the desired trade-off between power and performance; (2) Novel interpolation techniques to estimate spectrum occupancy in both spatial and temporal domains; (3) Algorithms to support optimized selection of sensors to minimize overall sensing cost; (4) Development of an end-to-end testbed and evaluation over a range of spectrum-aware applications. The project team has a range of expertise in topics relevant to the proposal, such as automated hardware design, digital signal processing, detection and estimation, wireless networking, networking algorithms, and networked systems design.
随着移动的数据的爆炸式增长,人们越来越认识到,必须将无线电频谱视为供应有限的重要资源。政策制定者和研究人员都在推广各种形式的频谱共享模式,以提高频谱利用率。就像任何其他需求和供应不匹配的资源一样,更好地利用无线电频谱的所有步骤也增加了对大规模频谱监测的需求。这有两个主要目的:(i)有助识别可用的频谱机会,使频谱共用系统更有效;(ii)有助我们更深入了解频谱在时间和空间上的使用和需求。 大规模频谱监测可以为众多“频谱感知”应用提供支持,从而形成一个完整的频谱数据、分析和应用生态系统。拟议的项目开发了一个名为SpecSense的端到端支持平台,以支持这一愿景。SpecSense(i)使用低成本、低功耗的定制设计硬件进行众包频谱监控,以及(ii)通过中央频谱服务器/数据库平台为频谱感知应用程序提供必要的库和接口支持。预计该项目将促进对众包频谱感知促进的频谱数据市场的兴趣。这可能会在频谱数据生态系统的各个方面产生商业利益。在许多领域,例如,医疗保健、教育、物联网,对移动的带宽存在巨大需求,并且由于缺乏带宽,创新受到阻碍。该项目的成功将推动此类创新。该项目还将为学生的各种教育活动提供一系列的学术准备。该项目解决了开发SpecSense的几个核心智力挑战,即,(1)探索基于FPGA的传感器,其中感测算法内置于FPGA中,伴随有自动实现和优化这些算法的工具,使得它们提供功率和性能之间的期望的权衡;(2)新颖的插值技术,以估计空间域和时间域中的频谱占用;(3)算法,以支持传感器的优化选择,以最小化总体感测成本;(4)开发端到端测试平台,并对一系列频谱感知应用进行评估。项目团队在与提案相关的主题方面拥有一系列专业知识,例如自动化硬件设计、数字信号处理、检测和估计、无线网络、网络算法和网络系统设计。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spectrum Patrolling With Crowdsourced Spectrum Sensors
  • DOI:
    10.1109/tccn.2019.2939793
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    A. Bhattacharya;Ayon Chakraborty;Samir R Das;Himanshu Gupta;P. Djurić
  • 通讯作者:
    A. Bhattacharya;Ayon Chakraborty;Samir R Das;Himanshu Gupta;P. Djurić
Efficient Localization of Multiple Intruders in Shared Spectrum System
SpecSense: Crowdsensing for efficient querying of spectrum occupancy
ProCSA: Protecting Privacy in Crowdsourced Spectrum Allocation
  • DOI:
    10.1007/978-3-030-29959-0_27
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Max Curran;Xiao Liang;Himanshu Gupta;Omkant Pandey;Samir R Das
  • 通讯作者:
    Max Curran;Xiao Liang;Himanshu Gupta;Omkant Pandey;Samir R Das
Multiple Transmitter Localization under Time-Skewed Observations
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samir Das其他文献

Research A Structural Equation Modeling (SEM) Approach to Explore the Association between Corporate Social Responsibility and Financial Performance: A Single Mediating Mechanism
研究结构方程模型(SEM)方法来探索企业社会责任与财务绩效之间的关联:单一中介机制
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gazi Md. Shakhawat Hossain;M. S. Rahman;Samir Das
  • 通讯作者:
    Samir Das
Integration of “omics” Data and Phenotypic Data Within a Unified Extensible Multimodal Framework
在统一的可扩展多模式框架内整合“组学”数据和表型数据
  • DOI:
    10.3389/fninf.2018.00091
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Samir Das;Xavier Lecours;Christine Rogers;C. Makowski;F. Chouinard;K. Klein;Natacha Beck;Pierre Rioux;Shawn T. Brown;Zia Mohaddes;C. Zweber;V. Foing;Marie Forest;K. O’Donnell;Joanne Clark;M. Meaney;C. Greenwood;Alan C. Evans
  • 通讯作者:
    Alan C. Evans
NIDM-Results: Standardized reporting of mass univariate neuroimaging results in SPM, FSL and AFNI
NIDM-结果:SPM、FSL 和 AFNI 中大量单变量神经影像结果的标准化报告
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Camille Maumet;B. N. Nichols;G. Flandin;K. Helmer;T. Auer;Alexander Bowring;V. Sochat;Samir Das;T. Glatard;R. Reynolds;R. Cox;Gang Chen;M. Jenkinson;Matthew A. Webster;J. Steffener;Krzysztof J. Gorgolewski;J. Turner;Thomas E. Nichols;Satrajit S. Ghosh;J. Poline;D. Keator
  • 通讯作者:
    D. Keator
Whole Genome Sequencing and Analysis of Mycobacteroides chelonae M77 Isolated from Cow Milk from the Hill State of Meghalaya, India
从印度梅加拉亚邦山区牛奶中分离的龟分枝杆菌 M77 的全基因组测序和分析
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    E. Vise;S. Ghatak;A. Garg;A. Karam;C. Prasad;A. Milton;I. Shakuntala;K. Puro;R. Sanjukta;Abhik Sen;Samir Das
  • 通讯作者:
    Samir Das
Brain Imaging Data Structure - a new standard for describing and organizing human neuroimaging data
脑成像数据结构 - 描述和组织人类神经成像数据的新标准
  • DOI:
    10.3389/conf.fnins.2015.91.00056
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Krzysztof J. Gorgolewski;J. Poline;D. Keator;B. N. Nichols;T. Auer;R. Craddock;G. Flandin;Satrajit S. Ghosh;V. Sochat;A. Rokem;Y. Halchenko;Michael Hanke;C. Haselgrove;K. Helmer;Camille Maumet;Thomas E. Nichols;J. Turner;Samir Das;D. Kennedy;R. Poldrack
  • 通讯作者:
    R. Poldrack

Samir Das的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samir Das', 18)}}的其他基金

QCIS-FF: Quantum Computing & Information Science Faculty Fellow at Stony Brook University
QCIS-FF:量子计算
  • 批准号:
    1954311
  • 财政年份:
    2020
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
NeTS: Medium: Collaborative Research: Passive Network of Tags for Smart Spaces
NeTS:媒介:协作研究:智能空间的无源标签网络
  • 批准号:
    1763843
  • 财政年份:
    2018
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Collaborative Research: Measurement-Augmented Spectrum Databases for White Spaces
协作研究:空白空间的测量增强频谱数据库
  • 批准号:
    1443951
  • 财政年份:
    2014
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
II-NEW: RIBBN - A Research Infrastructure for Backscatter-Based Networks
II-新:RIBBN - 基于反向散射的网络的研究基础设施
  • 批准号:
    1405740
  • 财政年份:
    2014
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
EAGER: Designing Programmable and Versatile Tags for Backscatter Networks
EAGER:为反向散射网络设计可编程多功能标签
  • 批准号:
    1354614
  • 财政年份:
    2013
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
NeTS: Small: Collaborative Research: Understanding Traffic Dynamics in Cellular Data Networks and Applications to Resource Management
NetS:小型:协作研究:了解蜂窝数据网络中的流量动态和资源管理应用
  • 批准号:
    1117719
  • 财政年份:
    2011
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: NECO: A Market-Driven Approach to Dynamic Spectrum Sharing
合作研究:NECO:市场驱动的动态频谱共享方法
  • 批准号:
    0831791
  • 财政年份:
    2008
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
NeTS-WN: Collaborative Research: A Measurement-Driven Physical-Interference-Based Approach for the Design of Mesh Networks
NeTS-WN:协作研究:一种基于测量驱动、基于物理干扰的网状网络设计方法
  • 批准号:
    0721455
  • 财政年份:
    2007
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS-NOSS: RFID-Based Sensor Networks: Exploiting Diversity and Redundancy
合作研究:NetS-NOSS:基于 RFID 的传感器网络:利用多样性和冗余
  • 批准号:
    0519734
  • 财政年份:
    2005
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
U.S.-India Cooperative Research: Multichannel Multihop Wireless LANs for Rapid Deployment
美印合作研究:用于快速部署的多通道多跳无线局域网
  • 批准号:
    0423460
  • 财政年份:
    2004
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了