EAGER: Biomanufacturing: Polymer Protective Effector T-Cell Isolation and Centrifugal Bioreactor Expansion for a Parasitic Disease Model with Relevance in Human Cancer Treatment
EAGER:生物制造:聚合物保护性效应 T 细胞分离和离心生物反应器扩增,用于与人类癌症治疗相关的寄生虫病模型
基本信息
- 批准号:1645249
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1645249 - Van WieRecent successes have shown the immune system can be used to fight cancers. The finding that cytotoxic immune cells develop against many types of cancer is offering fresh ways to fight cancer. Two challenges remain in developing ways to exploit this knowledge to improve methods for treating cancers. The first is developing therapies to block the ability of the cancer cells to interfere with killing by the cytotoxic immune cells. The second is isolating and expanding the immune cells for timely use to treat patients with life threatening cancers. The frequency of these cells is low in blood and cancer tissue. Investigators in chemical engineering and veterinary immunology have joined together to address these challenges. Cytotoxic cells will be separated by protective plastic coatings while the other cells are disrupted. A centrifugal bioreactor has been developed to explore methods for rapidly expanding cultures of immune cells. Study of a tick born parasite causing disease in cattle has identified a model system that provides a constant source of cytotoxic immune cells against parasite infected target cells that behave like leukemia cells. Methods for isolating the cytotoxic immune cells can be explored while optimizing methods to rapidly expand the cells, as will be needed for isolating cancer specific immune cells. Methods for optimizing culture conditions will be tested. The expanded cultures of immune cells can be monitored for purity and cytotoxic activity. Results from the research will be readily applicable for use with cytotoxic immune cells from cancer patients.T-lymphocyte immunotherapy is offering fresh ways to fight cancers that invade and take over cell machinery, leading to malignant tumors. This project emphasizes the use of a novel platform for evaluating methods to isolate and rapidly expand cytotoxic T cells. The model involves use of a protozoan parasite, Theileria parva or T. parva, transmitted by ticks. The infectious form invades lymphocytes following introduction during uptake of a blood meal. Following entrance into a lymphocyte, the parasite hijacks the regulatory mechanism for cell division causing cells to divide in synchrony with the parasite. Dysregulation of cytokine production by the infected cells interferes with the capacity of the immune system's capacity to develop a protective response before rapid proliferation of the infected cells leading to death of infected animals unless treated. Recent research shows cytotoxic T cells programmed against the T. parva parasite can be used to kill infected cells ex vivo. What is needed for cancer immunotherapy are ways to isolate the specific effector T-cells for targeting infected rapidly-dividing malignant cells, and to efficiently expand these cells to manufacture very large numbers for infusion back into a patient to increase survival. Several technologies will be combined in this project to create large numbers of effector CD8 T-lymphocytes (CTL) against T. parva to: 1) activate disease fighting CTL from vaccinated cattle, by stimulating peripheral blood T cells with T parva antigen-pulsed dendritic cells (the major antigen presenting cells; 2) selectively isolate specific CTL from the culture using a new polymer protective coating technique where all unwanted cells are removed by lysis; 3) test CTLs for clonality and maintenance of cytotoxic activity; and 4) expand CTL to large numbers using a novel centrifugal bioreactor (CBR). New knowledge will be gained relevant to activation of CTL useful in combating a variety of cancers. The polymer protective coating technique will be expanded from its current emphasis for use in isolating stem cells to CTL. CTL cytotoxicity assays will be refined especially by using the T. parva model. Understanding will be gained on extending the CBR for the first time to expand CTL for immunotherapy.
货车魏最近的成功表明免疫系统可以用来对抗癌症。细胞毒性免疫细胞可以对抗多种癌症的发现为抗癌提供了新的方法。在开发利用这些知识来改进治疗癌症的方法方面仍然存在两个挑战。第一个是开发治疗方法来阻断癌细胞干扰细胞毒性免疫细胞杀伤的能力。第二个是分离和扩增免疫细胞,以便及时用于治疗危及生命的癌症患者。这些细胞在血液和癌组织中的频率很低。化学工程和兽医免疫学的研究人员已经联合起来应对这些挑战。细胞毒性细胞将被保护性塑料涂层隔开,而其他细胞则被破坏。已经开发了离心生物反应器以探索用于快速扩增免疫细胞培养物的方法。对蜱传寄生虫引起牛疾病的研究已经确定了一种模型系统,该模型系统提供了针对寄生虫感染的靶细胞的细胞毒性免疫细胞的恒定来源,这些靶细胞的行为类似于白血病细胞。可以探索用于分离细胞毒性免疫细胞的方法,同时优化方法以快速扩增细胞,如分离癌症特异性免疫细胞所需的。将测试优化培养条件的方法。可以监测免疫细胞的扩增培养物的纯度和细胞毒性活性。该研究的结果将很容易应用于癌症患者的细胞毒性免疫细胞。T淋巴细胞免疫疗法提供了新的方法来对抗入侵和接管细胞机器的癌症,从而导致恶性肿瘤。该项目强调使用一种新的平台来评估分离和快速扩增细胞毒性T细胞的方法。该模型涉及使用原生动物寄生虫,小泰勒虫或T。细小病毒由蜱传播感染性形式在摄取血餐期间引入后侵入淋巴细胞。进入淋巴细胞后,寄生虫劫持细胞分裂的调节机制,使细胞与寄生虫同步分裂。受感染细胞的细胞因子产生失调干扰免疫系统在受感染细胞快速增殖之前产生保护性应答的能力,导致受感染动物死亡,除非进行治疗。最近的研究表明,细胞毒性T细胞针对T细胞编程。细小寄生虫可用于体外杀死感染的细胞。癌症免疫疗法所需要的是分离特异性效应T细胞以靶向受感染的快速分裂的恶性细胞的方法,并有效地扩增这些细胞以产生非常大量的细胞用于输注回患者体内以增加存活率。本项目将结合多种技术来产生大量的效应性CD 8 T淋巴细胞(CTL)。parva到:1)通过用T parva抗原脉冲的树突状细胞刺激外周血T细胞来激活来自接种疫苗的牛的抗病CTL(主要的抗原呈递细胞; 2)使用新的聚合物保护性包被技术从培养物中选择性地分离特异性CTL,其中通过裂解除去所有不需要的细胞; 3)测试CTL的克隆性和细胞毒性活性的维持;和4)使用新型离心生物反应器(CBR)大量扩增CTL。将获得与CTL的活化相关的新知识,CTL可用于对抗各种癌症。聚合物保护涂层技术将从目前的重点用于分离干细胞扩展到CTL。CTL细胞毒性试验将特别通过使用T. parva模型将获得首次扩展CBR以扩展用于免疫治疗的CTL的理解。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Development and Optimization of a Novel Centrifugal Bioreactor with a Real-Time Monitoring Sensor for T Cell Exhaustion with Applications in Cancer Immunotherapy
新型离心生物反应器的开发和优化,带有实时监测 T 细胞耗竭传感器,并在癌症免疫治疗中应用
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Brenden Fraser-Hevlin, Kitana M.
- 通讯作者:Brenden Fraser-Hevlin, Kitana M.
Determining Growth Models for Human Lymphoblastic Leukemia Cells for Expansion in a Centrifugal Bioreactor for Utilization in Cancer Immunotherapy
确定人淋巴细胞白血病细胞在离心生物反应器中扩增的生长模型,用于癌症免疫治疗
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Brenden Fraser-Hevlin, Kitana Kaiphanliam
- 通讯作者:Brenden Fraser-Hevlin, Kitana Kaiphanliam
Determining Kinetic Parameters for a Mathematical Model to Optimize Growth of Cancer-Fighting T Cells in a Novel Bioreactor
确定数学模型的动力学参数以优化新型生物反应器中抗癌 T 细胞的生长
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Moore, Z
- 通讯作者:Moore, Z
Optimizing Cytotoxic T Cell Growth in a Centrifugal Bioreactor through Kinetic Growth Models
通过动力学生长模型优化离心生物反应器中细胞毒性 T 细胞的生长
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Kitana Kaiphanliam, Brenden Fraser-Hevlin
- 通讯作者:Kitana Kaiphanliam, Brenden Fraser-Hevlin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bernard Van Wie其他文献
Board 295: Five Year Assessment for Educating Diverse Undergraduate Communities with Affordable Transport Equipment
Board 295:利用经济实惠的交通设备教育多元化本科社区的五年评估
- DOI:
10.18260/1-2--42278 - 发表时间:
1995 - 期刊:
- 影响因子:0
- 作者:
Zeynep Durak;Bernard Van Wie;David Thiessen;P. Dutta;Olusola O. Adesope;Kitana Kaiphanliam;Olivia Reynolds;Carah Watson;Oluwafemi Ajeigbe;Natalie Kallish;Jacqueline Gartner;A. I. Khan - 通讯作者:
A. I. Khan
Bernard Van Wie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bernard Van Wie', 18)}}的其他基金
I-Corps: Chimeric Antigen Receptor T Cell Manufacturing for Cancer Therapies
I-Corps:用于癌症治疗的嵌合抗原受体 T 细胞制造
- 批准号:
2403974 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: RECODE: On-line Feedback Control of Human Mesenchymal Stem Cell Chondrogenesis
合作研究:RECODE:人类间充质干细胞软骨形成的在线反馈控制
- 批准号:
2225528 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Using Low Cost Desktop Learning Modules to Educate Diverse Undergraduate Communities in Engineering
协作研究:使用低成本桌面学习模块来教育不同的工程本科社区
- 批准号:
1821578 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Enhancing Hands-on Interactive Learning in Process Technology Programs with New Low-Cost Miniature Industrial Equipment
协作研究:利用新型低成本微型工业设备增强工艺技术项目中的实践互动学习
- 批准号:
1601404 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
GOALI: Enhancing Cartilage Tissue Engineering through Synergistic Influence of Co-Culture, Mechano-Chemical Factors, and 3D Printed Scaffolds in a Novel Centrifugal Bioreactor
目标:通过新型离心生物反应器中共培养、机械化学因子和 3D 打印支架的协同影响来增强软骨组织工程
- 批准号:
1606226 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
I-Corps L: Hands-on Modules for Fluid Mechanics and Heat Transfer, A Market Transition
I-Corps L:流体力学和传热实践模块,市场转型
- 批准号:
1546979 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Affordable Desktop Learning Modules (DLMs) to Facilitate Transformation of Undergraduate Engineering Classes
经济实惠的桌面学习模块 (DLM) 促进本科工程课程转型
- 批准号:
1432674 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Synergistic Influences of Oscillating Pressure and Growth Factor on Chondrogenesis in a Novel Centrifugal Bioreactor
EAGER:振荡压力和生长因子对新型离心生物反应器中软骨形成的协同影响
- 批准号:
1212573 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Multi-Disciplinary Project-Based Paradigm that Uses Hands-on Desktop Learning Modules and Modern Learning Pedagogies
基于多学科项目的范式,使用动手桌面学习模块和现代学习教学法
- 批准号:
1023121 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Assessing and Disseminating Group Learning Pedagogy in Fluid Mechanics and Heat Transfer while Using Hands-on Desktop Units with Interchangeable Cartridges
使用带有可互换墨盒的动手桌面单元评估和传播流体力学和传热方面的小组学习教学法
- 批准号:
0618872 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
Identification and impact of polymers on stem cell products in an automated biomanufacturing platform
自动化生物制造平台中聚合物对干细胞产品的识别和影响
- 批准号:
10089013 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
FMRG: Bio: Enabling Technologies for Biomanufacturing Extracellular Vesicle-Based Therapeutics
FMRG:生物:基于细胞外囊泡的生物制造治疗的使能技术
- 批准号:
2328276 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track M: A new biomanufacturing process for making precipitated calcium carbonate and plant-based compounds that support human health
NSF Convergence Accelerator Track M:一种新的生物制造工艺,用于制造支持人类健康的沉淀碳酸钙和植物基化合物
- 批准号:
2344228 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
FMSG: Eco: Microalgae-based Biomanufacturing of Methionine for Organic Poultry Diets
FMSG:Eco:用于有机家禽日粮的基于微藻的蛋氨酸生物制造
- 批准号:
2328159 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Cost-Effective, AI-driven Automation Technology for Cell Culture Monitoring: Boosting Efficiency and Sustainability in Industrial Biomanufacturing and Streamlining Supply Chains
用于细胞培养监测的经济高效、人工智能驱动的自动化技术:提高工业生物制造的效率和可持续性并简化供应链
- 批准号:
10104748 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Launchpad
Smart biomanufacturing for genomic medicines
基因组药物的智能生物制造
- 批准号:
EP/X025446/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
A synthetic yeast methanotroph for methane based sustainable biomanufacturing - SynYeast
用于基于甲烷的可持续生物制造的合成酵母甲烷氧化菌 - SynYeast
- 批准号:
EP/Z000734/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Fellowship
HSI Pilot Project: Applying a Research-Based Learning Approach to Enhance Biomanufacturing Skills
HSI 试点项目:应用基于研究的学习方法来提高生物制造技能
- 批准号:
2345033 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Development of BioMara’s sustainable biorefinery for biomanufacturing new products from residual ‘waste’ streams and sustainability improvements
开发 BioMara 的可持续生物精炼厂,利用残余“废物”流生物制造新产品并提高可持续性
- 批准号:
10068120 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
Designing Nonconventional Hosts for Large-Scale Biomanufacturing Applications
为大规模生物制造应用设计非常规主机
- 批准号:
2868572 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Studentship














{{item.name}}会员




