EAGER: Biomanufacturing: Optimizing the Isolation, Transfection, and Expansion of CAR-T Cells with Modified PES Membranes
EAGER:生物制造:使用改性 PES 膜优化 CAR-T 细胞的分离、转染和扩增
基本信息
- 批准号:1645225
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-10-01 至 2019-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1645225 - ElmerLeukemia causes thousands of deaths every year. A promising new treatment called CAR-T cell therapy has been shown to effectively treat acute lymphoblastic leukemia (ALL). In CAR-T cell therapy, T cells (a special type of white blood cell) are extracted from the patient and reprogrammed. They are then re-injected into the patient to seek out and destroy cancer cells. While this treatment has been shown to be highly effective, the techniques used to extract, reprogram, and grow the T cells are prohibitively expensive and time consuming. The goal of this project is to develop new technologies that will streamline every step in CAR-T cell therapy. The first objective is to develop novel membranes to help isolate T cells from a patient's blood. Then, an efficient genetic engineering technique to reprogram the isolated T cells will be optimized. Finally, methods will be developed to accelerate the growth rate of the engineered T cells. Optimizing these steps will significantly decrease costs and time required for CAR-T cell therapy, thereby enabling this powerful new treatment to help more cancer patients. The equipment purchased for the project will be used in demonstrations for undergraduate and graduate courses as part of learning modules that discuss CAR-T therapy. Each of the experiments conducted will be recorded and used to create instructional videos that will be posted online and used to train new students on advanced laboratory techniques.Reprogramming T cells with chimeric antigen receptors (CAR) enables them to find and destroy cancer cells. This technique has been used to effectively eliminate cancer cells in leukemia patients. However, current methods to isolate, transform, and expand the CAR-T cells are prohibitively expensive and time consuming. The goal of this project is to streamline and simplify every step in T cell biomanufacturing. T cell isolation will be streamlined by developing novel polyethersulfone membranes with immobilized antibodies and/or other ligands that selectively capture naïve and central memory T cells (since these phenotypes are more effective for immunotherapy). Membranes will be modified to isolate transfected T cells and to activate T cells. T cell transfection will be enhanced by optimizing a CRISPR/Cas-mediated transfection strategy that does not require electroporation and can be done in situ in the bioreactor. CRISPR/Cas will be used to integrate and co-express the CAR with membrane-bound avidin for transfectant isolation. T cell expansion will be optimized by varying culture conditions in a WAVE bioreactor and using a perfusion filter with immobilized anti-CD3 and anti-CD28 antibodies for T cell activation. Culture conditions (cytokine composition/concentration) will also be adjusted to maximize the number of T cells with the naïve/central memory phenotype (i.e. minimizing the effector T cell phenotype). Together, these steps will yield a novel T-cell biomanufacturing system that will allow the user to easily isolate, transfect, and expand T cells inside a bioreactor with attached membrane cartridges. This system will be designed to have lower costs and shorter expansion times than bead-based technologies. Its closed nature and plug-and-play cartridge connections may eventually allow it to be used inside a hospital, thereby avoiding transportation, storage, and other logistical issues. In addition to the improvement of CAR-T cell therapy, several other new insights and advances may also come out of the project. For example, the transfection of T cells will be enhanced by co-administering inhibitors for several different proteins in the innate immune system. The results of these studies may reveal which of those proteins are specific to T cells and why the efficiency of CRISPR/Cas genome editing is relatively low in T cells. In addition, the WAVE-ATF system will be used to investigate how shear levels affect T cell activation. This work will also determine whether culture conditions in the bioreactor influence differentiation of T cells to naïve, central memory or effector memory T cells, which could be used to minimize differentiation to the effector memory T cell subset that is less desirable for immunotherapy.
1645225 - elmer白血病每年导致数千人死亡。一种被称为CAR-T细胞疗法的新疗法被证明可以有效治疗急性淋巴细胞白血病(ALL)。在CAR-T细胞疗法中,从患者体内提取T细胞(一种特殊类型的白细胞)并重新编程。然后将它们重新注射到患者体内,以寻找并摧毁癌细胞。虽然这种治疗已被证明是非常有效的,但用于提取、重编程和培养T细胞的技术非常昂贵且耗时。该项目的目标是开发新技术,简化CAR-T细胞治疗的每一步。第一个目标是开发新的膜来帮助从患者血液中分离T细胞。然后,将优化一种有效的基因工程技术来重新编程分离的T细胞。最后,将开发方法来加快工程T细胞的生长速度。优化这些步骤将显著降低CAR-T细胞疗法所需的成本和时间,从而使这种强大的新疗法能够帮助更多的癌症患者。为该项目购买的设备将用于本科和研究生课程的演示,作为讨论CAR-T疗法的学习模块的一部分。所进行的每个实验都将被记录下来,并用于制作教学视频,这些视频将发布在网上,并用于培训新学生掌握先进的实验室技术。用嵌合抗原受体(CAR)对T细胞进行重编程,使它们能够发现并摧毁癌细胞。这项技术已被用于有效地消除白血病患者的癌细胞。然而,目前分离、转化和扩增CAR-T细胞的方法既昂贵又耗时。该项目的目标是简化T细胞生物制造的每一步。T细胞的分离将通过开发新型聚醚砜膜来简化,该膜具有固定化抗体和/或其他配体,可以选择性地捕获naïve和中枢记忆T细胞(因为这些表型对免疫治疗更有效)。膜将被修饰以分离转染的T细胞并激活T细胞。通过优化CRISPR/ cas介导的转染策略,T细胞转染将得到增强,该策略不需要电穿孔,可以在生物反应器中原位进行。CRISPR/Cas将用于将CAR与膜结合的亲和素整合并共表达,以进行转染分离。T细胞扩增将通过在WAVE生物反应器中改变培养条件和使用具有固定化抗cd3和抗cd28抗体的灌注过滤器来优化T细胞活化。还将调整培养条件(细胞因子组成/浓度),以最大限度地增加naïve/中枢记忆表型的T细胞数量(即最小化效应T细胞表型)。总之,这些步骤将产生一种新的T细胞生物制造系统,该系统将允许用户在带有附加膜盒的生物反应器内轻松分离、转染和扩增T细胞。与基于磁珠的技术相比,该系统将具有更低的成本和更短的扩展时间。它的封闭性和即插即用的药筒连接可能最终允许它在医院内使用,从而避免运输、储存和其他后勤问题。除了CAR-T细胞疗法的改进之外,该项目还可能产生其他一些新的见解和进展。例如,T细胞的转染将通过在先天免疫系统中共同施用几种不同蛋白质的抑制剂来增强。这些研究的结果可能会揭示哪些蛋白质是T细胞特异性的,以及为什么CRISPR/Cas基因组编辑在T细胞中的效率相对较低。此外,WAVE-ATF系统将用于研究剪切水平如何影响T细胞活化。这项工作还将确定生物反应器中的培养条件是否会影响T细胞向naïve、中枢记忆或效应记忆T细胞的分化,这可以用来最大限度地减少向效应记忆T细胞亚群的分化,而效应记忆T细胞亚群对免疫治疗来说是不太理想的。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nonviral gene delivery to T cells with Lipofectamine LTX
- DOI:10.1002/bit.27686
- 发表时间:2021-02-02
- 期刊:
- 影响因子:3.8
- 作者:Harris, Emily;Zimmerman, Devon;Elmer, Jacob
- 通讯作者:Elmer, Jacob
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jacob Elmer其他文献
Transcriptomic analysis of the innate immune response to emin vitro/em transfection of plasmid DNA
对质粒 DNA 体外转染先天免疫反应的转录组学分析
- DOI:
10.1016/j.omtn.2022.11.025 - 发表时间:
2023-03-14 - 期刊:
- 影响因子:6.100
- 作者:
Eric Warga;Jared Anderson;Matthew Tucker;Emily Harris;Jacob Elmer - 通讯作者:
Jacob Elmer
Jacob Elmer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jacob Elmer', 18)}}的其他基金
CAREER: Manipulating the Innate Immune Response to Improve Gene Therapy
职业:操纵先天免疫反应以改善基因治疗
- 批准号:
1651837 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Manipulating Epigenetic Mechanisms to Enhance Non-Viral Transgene Expression
合作研究:操纵表观遗传机制以增强非病毒转基因表达
- 批准号:
1403214 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
Identification and impact of polymers on stem cell products in an automated biomanufacturing platform
自动化生物制造平台中聚合物对干细胞产品的识别和影响
- 批准号:
10089013 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
FMRG: Bio: Enabling Technologies for Biomanufacturing Extracellular Vesicle-Based Therapeutics
FMRG:生物:基于细胞外囊泡的生物制造治疗的使能技术
- 批准号:
2328276 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Cost-Effective, AI-driven Automation Technology for Cell Culture Monitoring: Boosting Efficiency and Sustainability in Industrial Biomanufacturing and Streamlining Supply Chains
用于细胞培养监测的经济高效、人工智能驱动的自动化技术:提高工业生物制造的效率和可持续性并简化供应链
- 批准号:
10104748 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Launchpad
FMSG: Eco: Microalgae-based Biomanufacturing of Methionine for Organic Poultry Diets
FMSG:Eco:用于有机家禽日粮的基于微藻的蛋氨酸生物制造
- 批准号:
2328159 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track M: A new biomanufacturing process for making precipitated calcium carbonate and plant-based compounds that support human health
NSF Convergence Accelerator Track M:一种新的生物制造工艺,用于制造支持人类健康的沉淀碳酸钙和植物基化合物
- 批准号:
2344228 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Smart biomanufacturing for genomic medicines
基因组药物的智能生物制造
- 批准号:
EP/X025446/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
A synthetic yeast methanotroph for methane based sustainable biomanufacturing - SynYeast
用于基于甲烷的可持续生物制造的合成酵母甲烷氧化菌 - SynYeast
- 批准号:
EP/Z000734/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Fellowship
HSI Pilot Project: Applying a Research-Based Learning Approach to Enhance Biomanufacturing Skills
HSI 试点项目:应用基于研究的学习方法来提高生物制造技能
- 批准号:
2345033 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Development of BioMara’s sustainable biorefinery for biomanufacturing new products from residual ‘waste’ streams and sustainability improvements
开发 BioMara 的可持续生物精炼厂,利用残余“废物”流生物制造新产品并提高可持续性
- 批准号:
10068120 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
Designing Nonconventional Hosts for Large-Scale Biomanufacturing Applications
为大规模生物制造应用设计非常规主机
- 批准号:
2868572 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Studentship