CPS: Synergy: Verified Control of Cooperative Autonomous Vehicles
CPS:协同:协作自动驾驶车辆的验证控制
基本信息
- 批准号:1646556
- 负责人:
- 金额:$ 77.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-10-01 至 2020-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project studies techniques for constructing guaranteed-safe control algorithms for maneuvering autonomous vehicles ("self-driving cars") under a variety of environmental conditions. Existing autonomous vehicles are able to navigate highways and surface streets reliably when the driving conditions do not pose significant challenges. However, future vehicles will need to handle pot-holes, snow, high winds, driving rain, darting animals, fog and all the other impediments that make driving in the real world challenging in the first place. Some of these conditions require "aggressive maneuvers" in the form of sudden acceleration, braking and/or rapid steering. Such aggressive maneuvers present significant challenges to existing autonomy algorithms, raising concerns regarding the safety of the passengers, other vehicles on the road and pedestrians. At the same time, guaranteeing safe behavior while in autonomous operation is critical for the adoption of these systems, and such guarantees demand the development of reliable and verified maneuvering. The Ninja Car platform at the University of Colorado, Boulder serves as an experimental platform for the verified algorithms, and is also used to educate students and enthusiasts on the design and implementation of autonomous vehicles. The research carried out in this project contributes to the ultimate vision of self-driving cars that are safe by focusing on guaranteed-safe algorithms for maneuvering. Furthermore, the educational activities seek to educate a new generation of students and enthusiasts from the general public on the design and deployment of self-driving cars.This project develops reliable control systems for maneuver regulation in autonomous ground vehicles that are adaptive to, and guaranteed for, a variety of driving conditions. The approach first considers the problem of developing a stack of increasingly complex models for autonomous vehicles. The simplest models serve to develop formally verified control algorithms for maneuver regulation and the corresponding set of maneuvers that can be carried out for varying road conditions. These results are transferred to more sophisticated models that use on-board sensors to fine-tune the control to the actual dynamics of the car (such as the wear on the shocks, tire pressure, etc.). Finally, building upon verified maneuvers for a single vehicle, the project studies cooperative maneuvers for multiple vehicles, wherein the vehicles communicate to meaningfully share information. The cooperating vehicles then implement verified collision avoidance schemes and share driving conditions (e.g. how slick a given road actually is) to formulate environment-aware, guaranteed-safe maneuvers.The research extends the growing body of work on applying formal methods for rigorously solving control problems. A framework of transverse control Lyapunov and barrier functions provides a basis for solving trajectory tracking problems for nonlinear dynamical systems. The work also investigates new constraint-solving approaches for synthesizing these functions for nonlinear systems. The research is evaluated using a 1/8th-scale model testbed called the Ninja Car at the University of Colorado, Boulder. The research ideas are also integrated into educational activities that use the Ninja Car as a cost effective system for instructing engineering students at all levels, and enthusiasts interested in autonomous vehicles, on the fundamental principles that underlie the design and deployment of these systems.
该项目研究在各种环境条件下为机动自动驾驶汽车(“自动驾驶汽车”)构建保证安全的控制算法的技术。现有的自动驾驶汽车能够在驾驶条件不构成重大挑战的情况下可靠地导航高速公路和地面街道。然而,未来的汽车将需要处理坑洞、雪、大风、暴雨、飞奔的动物、雾和所有其他障碍,这些障碍首先会让现实世界中的驾驶变得具有挑战性。其中一些情况需要以突然加速、刹车和/或快速转向的形式进行“攻击性机动”。这种激进的操作对现有的自动驾驶算法构成了重大挑战,引发了对乘客、道路上其他车辆和行人安全的担忧。同时,确保自主操作时的安全行为是采用这些系统的关键,这种保证要求开发可靠和经过验证的机动。科罗拉多大学博尔德分校的忍者汽车平台是经过验证的算法的实验平台,也被用来教育学生和爱好者如何设计和实现自动驾驶汽车。该项目中开展的研究通过专注于保证安全的机动算法,为自动驾驶汽车安全的终极愿景做出了贡献。此外,教育活动旨在教育新一代学生和普通公众爱好者如何设计和部署自动驾驶汽车。该项目开发了可靠的控制系统,用于自动地面车辆的机动调节,适应并保证各种驾驶条件。该方法首先考虑为自动驾驶汽车开发一系列日益复杂的模型的问题。最简单的模型用于开发经过正式验证的机动调节控制算法,以及可针对不同路况执行的相应机动集。这些结果被转移到更复杂的模型中,这些模型使用车载传感器来微调控制,以适应汽车的实际动态(如冲击磨损、轮胎压力等)。最后,在单个车辆的验证机动的基础上,该项目研究了多个车辆的协同机动,其中车辆进行通信以有意义地共享信息。然后,合作车辆实施经过验证的防撞方案,并分享驾驶条件(例如,给定的道路实际有多光滑),以制定环境感知、保证安全的操作。这项研究扩展了越来越多的工作,即应用形式方法严格解决控制问题。横向控制Lyapunov函数和障碍函数的框架为解决非线性动力系统的轨迹跟踪问题提供了基础。这项工作还探索了新的约束求解方法,用于综合非线性系统的这些函数。这项研究是使用科罗拉多大学博尔德分校名为忍者汽车的1/8比例模型试验台进行评估的。研究思路还被整合到教育活动中,使用忍者汽车作为一个具有成本效益的系统,指导各级工程专业学生和对自动驾驶汽车感兴趣的爱好者,了解这些系统设计和部署的基本原则。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning Lyapunov (Potential) Functions from Counterexamples and Demonstrations
从反例和演示中学习李亚普诺夫(势)函数
- DOI:10.15607/rss.2017.xiii.049
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Ravanbakhsh, Hadi;Sankaranarayanan, Sriram
- 通讯作者:Sankaranarayanan, Sriram
Online System Identification and Calibration of Dynamic Models for Autonomous Ground Vehicles
自主地面车辆动态模型的在线系统识别和校准
- DOI:10.1109/icra.2018.8460691
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Aghli, Sina;Heckman, Christoffer
- 通讯作者:Heckman, Christoffer
Model Predictive Real-Time Monitoring of Linear Systems
- DOI:10.1109/rtss.2017.00035
- 发表时间:2017-12
- 期刊:
- 影响因子:0
- 作者:Xin Chen;S. Sankaranarayanan
- 通讯作者:Xin Chen;S. Sankaranarayanan
Distributed Online Convex Programming for Collision Avoidance in Multi-agent Autonomous Vehicle Systems
多智能体自主车辆系统中避免碰撞的分布式在线凸规划
- DOI:10.23919/acc.2019.8814857
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Ding, Guohui;Ravanbakhsh, Hadi;Liu, Zhiyuan;Sankaranarayanan, Sriram;Chen, Lijun
- 通讯作者:Chen, Lijun
Trajectory Tracking Control for Robotic Vehicles using Counterexample Guided Training of Neural Networks
使用神经网络反例引导训练的机器人车辆轨迹跟踪控制
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Claviere, Arthur;Dutta, Souradeep;Sankaranarayanan, Sriram
- 通讯作者:Sankaranarayanan, Sriram
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christoffer Heckman其他文献
Restorebot: Towards an Autonomous Robotics Platform for Degraded Rangeland Restoration
Restorebot:迈向退化牧场恢复的自主机器人平台
- DOI:
10.48550/arxiv.2312.07724 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Kristen Such;Harel Biggie;Christoffer Heckman - 通讯作者:
Christoffer Heckman
Kalman Filter Auto-Tuning With Consistent and Robust Bayesian Optimization
卡尔曼滤波器自动调整与一致和鲁棒的贝叶斯优化
- DOI:
10.1109/taes.2024.3350587 - 发表时间:
2024 - 期刊:
- 影响因子:4.4
- 作者:
Zhaozhong Chen;Harel Biggie;Nisar Ahmed;S. Julier;Christoffer Heckman - 通讯作者:
Christoffer Heckman
CogExplore: Contextual Exploration with Language-Encoded Environment Representations
CogExplore:使用语言编码的环境表示进行上下文探索
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Harel Biggie;Patrick Cooper;Doncey Albin;Kristen Such;Christoffer Heckman - 通讯作者:
Christoffer Heckman
Christoffer Heckman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Leveraging the synergy between experiment and computation to understand the origins of chalcogen bonding
利用实验和计算之间的协同作用来了解硫族键合的起源
- 批准号:
EP/Y00244X/1 - 财政年份:2024
- 资助金额:
$ 77.67万 - 项目类别:
Research Grant
Multiple Representations of Learning in Dynamics and Control: Exploring the Synergy of Low-Cost Portable Lab Equipment, Virtual Labs, and AI within Student Learning Activities
动力学和控制中学习的多重表示:探索低成本便携式实验室设备、虚拟实验室和人工智能在学生学习活动中的协同作用
- 批准号:
2336998 - 财政年份:2024
- 资助金额:
$ 77.67万 - 项目类别:
Standard Grant
Development of a novel oral vaccine for fish: Synergy of chitosan nano particle and complement-mediated opsonization
新型鱼类口服疫苗的开发:壳聚糖纳米颗粒与补体介导的调理作用的协同作用
- 批准号:
24K17960 - 财政年份:2024
- 资助金额:
$ 77.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Synergy between future 21-cm experiments and physical cosmology
未来 21 厘米实验与物理宇宙学之间的协同作用
- 批准号:
DE240101129 - 财政年份:2024
- 资助金额:
$ 77.67万 - 项目类别:
Discovery Early Career Researcher Award
Investigation of upper limb synergy in hemiplegic patients and development of neurorehabilitation.
偏瘫患者上肢协同作用的调查和神经康复的发展。
- 批准号:
23K10410 - 财政年份:2023
- 资助金额:
$ 77.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
BRITE Synergy: Chemically Resilient, Fouling Resistant Separation Membranes Manufactured Using Aqueous Phase Inversion
BRITE Synergy:采用水相转化技术制造的化学弹性、防污分离膜
- 批准号:
2227307 - 财政年份:2023
- 资助金额:
$ 77.67万 - 项目类别:
Standard Grant
Contralesional Corticobulbospinal Structural and Functional Changes Post Stroke: Biomarkers for the upper limb flexion synergy
中风后对侧皮质球脊髓结构和功能变化:上肢屈曲协同作用的生物标志物
- 批准号:
10741103 - 财政年份:2023
- 资助金额:
$ 77.67万 - 项目类别:
BRITE Synergy: Seismic Cracking of Embankments and Earth Dams
BRITE Synergy:路堤和土坝的地震开裂
- 批准号:
2226154 - 财政年份:2023
- 资助金额:
$ 77.67万 - 项目类别:
Standard Grant
Mechanisms of Synergy between Oncolytic Herpes Simplex Virus and Trabectedin in Pediatric Bone Sarcomas
溶瘤单纯疱疹病毒与曲贝替定治疗小儿骨肉瘤的协同作用机制
- 批准号:
10607503 - 财政年份:2023
- 资助金额:
$ 77.67万 - 项目类别:
Sex-dependent synergy between O3 exposure, APOE4 e4 genotype, and aging in the onset of Alzheimer's disease
O3 暴露、APOE4 e4 基因型和衰老在阿尔茨海默病发病过程中的性别依赖性协同作用
- 批准号:
10584765 - 财政年份:2023
- 资助金额:
$ 77.67万 - 项目类别: