EAGER: Network Sparsification for Atomistic to Continuum Scale Solid Mechanics

EAGER:原子到连续尺度固体力学的网络稀疏化

基本信息

  • 批准号:
    1648618
  • 负责人:
  • 金额:
    $ 9.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-15 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

This EArly-concept Grant for Exploratory Research (EAGER) award supports the use of network science tools to predict characteristics of materials. Small imperfections (e.g., defects) in solid materials can have a dramatic impact on their material properties. Models that predict these properties can be extraordinarily challenging due to the physical complexity and computer resources required to solve such problems. To overcome this challenge and advance the understanding of defect mechanics, this award will provide the initial support to formulate and validate a new modeling methodology that leverages novel mathematical tools from network science. While network science has been successfully used to understand global properties of systems associated with friendships, spread of diseases, and information over the Internet, it has not been considered for predicting complex material properties of solids. By uncovering the most important local interactions within a solid, the PIs expect to provide new insights into global material characteristics that take material defects into consideration. This has implications on designing new electronic materials, smart actuator and sensor materials for robotics, and materials for energy applications. The network science tools will also be introduced to graduate and undergraduate students through research experiences and courses.A graph theoretic approach to constitutive model predictions of solids will be applied to bridge the gap between atomic structure calculations and continuum field theory of solids. If successful, this approach will provide unique opportunities in solid mechanics to utilize new tools to provide deeper insight of collective atomic behavior as a continuum with advanced predictive power supported by the properties of the underlying network. The PIs plan to utilize such concepts to understand how local atomic forces govern mesoscale constitutive behavior by projecting material physics onto graphs of varying sparsity. Stochastic estimations of deformation based on the discrete graphs will be utilized within a continuum framework to support quantification of stresses near defects in solids. Utilization of Bayesian uncertainty quantification will be used to provide metrics for judging the efficacy of how changes in the network structure (e.g., defects structures) give rise to changes in mesoscale constitutive behavior. Atomistic calculations of a Lennard-Jones potential in one dimension will be extended to two and three dimensional molecular dynamic simulations. Network structures will be formulated from these models and then used for mesoscale continuum homogenization of deformation to assess validity of the network-based characterization of material defects.
EARLY概念探索性研究资助(EAGER)奖支持使用网络科学工具来预测材料的特性。小的缺陷(例如,缺陷)对它们的材料性能具有显著的影响。 由于解决这些问题所需的物理复杂性和计算机资源,预测这些属性的模型可能非常具有挑战性。 为了克服这一挑战并促进对缺陷机制的理解,该奖项将提供初步支持,以制定和验证一种新的建模方法,该方法利用网络科学的新型数学工具。 虽然网络科学已经成功地用于理解与友谊,疾病传播和互联网信息相关的系统的全局属性,但它还没有被考虑用于预测固体的复杂材料属性。 通过揭示固体中最重要的局部相互作用,PI有望为考虑材料缺陷的全球材料特性提供新的见解。这对设计新的电子材料、机器人智能执行器和传感器材料以及能源应用材料具有重要意义。网络科学工具也将通过研究经验和课程介绍给研究生和本科生。图论方法的本构模型预测的固体将被应用到原子结构计算和固体连续场理论之间的差距。 如果成功,这种方法将为固体力学提供独特的机会,利用新的工具来更深入地了解集体原子行为,作为一个连续体,具有由底层网络属性支持的高级预测能力。 PI计划利用这些概念来理解局部原子力如何通过将材料物理投影到不同稀疏度的图上来控制中尺度本构行为。 基于离散图的变形的随机估计将在连续体框架内被利用,以支持固体中缺陷附近的应力的量化。 贝叶斯不确定性量化的利用将用于提供用于判断网络结构中的变化如何有效的度量(例如,缺陷结构)引起中尺度本构行为的变化。 一维Lennard-Jones势的原子计算将扩展到二维和三维分子动力学模拟。 网络结构将从这些模型中制定,然后用于变形的中尺度连续均匀化,以评估基于网络的材料缺陷表征的有效性。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
NETWORK THEORETIC APPROACH TO ATOMISTIC MATERIAL MODELING USING SPECTRAL SPARSIFICATION
使用光谱稀疏化进行原子材料建模的网络理论方法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Oates其他文献

William Oates的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Oates', 18)}}的其他基金

Quantum Computing Workshop for Advancing Aerospace Sciences
推进航空航天科学的量子计算研讨会
  • 批准号:
    1801103
  • 财政年份:
    2017
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Standard Grant
Understanding Surface Wetting and Vapor Adsorption Induced Degradation Pathways of Organic-Inorganic Hybrid Perovskites through Predictive Atomistic Simulations
通过预测原子模拟了解有机-无机杂化钙钛矿的表面润湿和蒸汽吸附诱导的降解途径
  • 批准号:
    1708968
  • 财政年份:
    2017
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Standard Grant
CDS&E/Collaborative Research: Uncertainty Quantification of an Electromechanical Nonlinear Continuum Theory
CDS
  • 批准号:
    1306320
  • 财政年份:
    2013
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Standard Grant
CAREER: Materials Driven by Light: Nonlinear Photomechanics of Liquid Crystal Elastomers
职业:光驱动材料:液晶弹性体的非线性光力学
  • 批准号:
    1054465
  • 财政年份:
    2011
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Standard Grant

相似国自然基金

多维在线跨语言Calling Network建模及其在可信国家电子税务软件中的实证应用
  • 批准号:
    91418205
  • 批准年份:
    2014
  • 资助金额:
    170.0 万元
  • 项目类别:
    重大研究计划
基于Wireless Mesh Network的分布式操作系统研究
  • 批准号:
    60673142
  • 批准年份:
    2006
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目

相似海外基金

How can we make use of one or more computationally powerful virtual robots, to create a hive mind network to better coordinate multi-robot teams?
我们如何利用一个或多个计算能力强大的虚拟机器人来创建蜂巢思维网络,以更好地协调多机器人团队?
  • 批准号:
    2594635
  • 财政年份:
    2025
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Studentship
A national network for magnetic resonance spectroscopy
国家磁共振波谱网络
  • 批准号:
    LE240100050
  • 财政年份:
    2024
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
EukaryoticHopanoids: Deciphering the regulatory network behind unusual lipids in eukaryotes
真核Hopanoids:破译真核生物异常脂质背后的调控网络
  • 批准号:
    EP/Y024702/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Fellowship
Intelligent Breast Cancer DiagnOsis and MonItoring Therapeutic Response Training Network (CanDoIt)
智能乳腺癌诊断和监测治疗反应训练网络(CanDoIt)
  • 批准号:
    EP/Y03693X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Research Grant
SONNETS: Scalability Oriented Novel Network of Event Triggered Systems
SONNETS:面向可扩展性的事件触发系统新型网络
  • 批准号:
    EP/X036006/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Research Grant
IUCRC Phase I University of Wisconsin-Milwaukee: Center for Concrete Advancement Network (CAN), Lead Site
IUCRC 第一阶段威斯康星大学密尔沃基分校:混凝土进步网络中心 (CAN),主要站点
  • 批准号:
    2310861
  • 财政年份:
    2024
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Continuing Grant
Capacity Assessment, Tracking, & Enhancement through Network Analysis: Developing a Tool to Inform Capacity Building Efforts in Complex STEM Education Systems
能力评估、跟踪、
  • 批准号:
    2315532
  • 财政年份:
    2024
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Standard Grant
ART: Translational Research Ambassadors Network for Strengthening Institutional Capacity and Fostering a Responsive and Open Mindset (TRANSFORM)
ART:加强机构能力和培养积极响应和开放心态的转化研究大使网络(TRANSFORM)
  • 批准号:
    2331208
  • 财政年份:
    2024
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Cooperative Agreement
CC* Networking Infrastructure: YinzerNet: A Multi-Site Data and AI Driven Research Network
CC* 网络基础设施:YinzerNet:多站点数据和人工智能驱动的研究网络
  • 批准号:
    2346707
  • 财政年份:
    2024
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Standard Grant
CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
  • 批准号:
    2412285
  • 财政年份:
    2024
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了