STTR Phase I: Hydrogen Storage in Catalytically-modified Porous Silicon

STTR 第一阶段:催化改性多孔硅储氢

基本信息

  • 批准号:
    1648748
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-01-01 至 2018-01-31
  • 项目状态:
    已结题

项目摘要

This STTR Phase I project will study the storage of hydrogen on a novel material produced from silicon - the same substance used to make solar panels and computer chips. This unique and patented approach has the potential to eclipse all prior methods of hydrogen storage in terms of pressure, temperature, safety, cost, and convenience. Silicon is earth-abundant and benign to humans - it is even promotes healthy skin, hair, and fingernails. The implication of hydrogen-in-silicon is that fuel cell-powered vehicles, homes, and electronics can be far more efficient and clean than any other source of energy. Of great significance is that this technology will allow homeowners and businesses to generate their own hydrogen by splitting water using rooftop solar panels. By storing this as hydrogen-in-silicon a home can be run overnight or for many days during a cloudy spell. Hydrogen can replace the batteries in portable electronics so they can last up to 20 days without a recharge - far longer than with batteries. And if the rooftop system is of sufficient size, one can produce the hydrogen needed for a fuel cell vehicle, such as those already on the market. The implications of this are far-reaching, allowing complete energy independence for all, for all time to come, with minimal environmental impact and using almost completely renewable and low-cost resources which are easy to recycle.Porous silicon is easy to synthesize but requires a catalyst to recharge from a gaseous source. The introduction of the catalyst is critical as it must be controlled spatially and positioned to effect spillover onto and off of silicon. Density Functional Theory studies show this is energetically favorable and first-order macroscopic calculations indicate that recharge can be effected in 3.5 minutes at 8 bar and 250 C. The overall energy difference between fully-charged and fully-discharged silicon-hydrogen is an amazingly low 1 kcal/mol. The energy barrier is the strong H-H bond which dominates the kinetics. The course of this project is to strategically place palladium atoms at specific sites on the matrix of porous silicon so that it can mediate the H-H bond energy and allow spillover onto the 800 m^2/gm surface area of microporous silicon. This has been patented but never demonstrated in the laboratory, which is why this funding from NSF is needed. A further goal of this work is to demonstrate the viability of low-cost silicon using metallurgical grade material instead of the single-crystal silicon which has been used to date.
这个STTR第一阶段项目将研究在一种由硅制成的新材料上储存氢-这种材料与用于制造太阳能电池板和计算机芯片的材料相同。这种独特的专利方法有可能在压力,温度,安全性,成本和便利性方面超越所有先前的储氢方法。硅在地球上很丰富,对人类无害-它甚至可以促进健康的皮肤,头发和指甲。硅中氢的含义是,燃料电池驱动的车辆,家庭和电子产品可以比任何其他能源更高效,更清洁。具有重要意义的是,这项技术将允许房主和企业通过使用屋顶太阳能电池板分解水来产生自己的氢气。通过将其储存为硅中的氢,一个家庭可以在一夜之间或多云的时候运行许多天。氢可以取代便携式电子产品中的电池,因此它们可以在不充电的情况下持续长达20天-远远长于电池。如果屋顶系统足够大,就可以生产燃料电池汽车所需的氢气,比如已经上市的那些。这意味着深远的影响,允许所有人在未来的所有时间内完全实现能源独立,对环境的影响最小,并且使用几乎完全可再生和易于回收的低成本资源。多孔硅易于合成,但需要催化剂才能从气态来源重新充电。催化剂的引入是至关重要的,因为它必须在空间上受到控制并定位以实现溢出到硅上和硅上。密度泛函理论研究表明这在能量上是有利的,并且一阶宏观计算表明,在8巴和250 ℃下,可以在3.5分钟内实现再充电。完全充电和完全放电的硅氢之间的总能量差是惊人的低1千卡/摩尔。能垒是强的H-H键,其主导动力学。该项目的过程是战略性地将钯原子放置在多孔硅基质的特定位置,以便它可以介导H-H键能并允许溢出到800 m^2/gm表面积的微孔硅上。这已经获得了专利,但从未在实验室中得到证明,这就是为什么需要NSF的资金。这项工作的另一个目标是证明使用冶金级材料代替迄今为止使用的单晶硅的低成本硅的可行性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alan Wilks其他文献

Alan Wilks的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark Supercooled Phase Transition
  • 批准号:
    24ZR1429700
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
ATLAS实验探测器Phase 2升级
  • 批准号:
    11961141014
  • 批准年份:
    2019
  • 资助金额:
    3350 万元
  • 项目类别:
    国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
  • 批准号:
    41802035
  • 批准年份:
    2018
  • 资助金额:
    12.0 万元
  • 项目类别:
    青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
  • 批准号:
    61675216
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于Phase-type分布的多状态系统可靠性模型研究
  • 批准号:
    71501183
  • 批准年份:
    2015
  • 资助金额:
    17.4 万元
  • 项目类别:
    青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
  • 批准号:
    51201142
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
  • 批准号:
    11101428
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
  • 批准号:
    19374069
  • 批准年份:
    1993
  • 资助金额:
    6.4 万元
  • 项目类别:
    面上项目

相似海外基金

SBIR Phase I: Advanced Manufacturing of Oxide Dispersion-Strengthened Superalloys for High Temperature Creep and Hydrogen Environment Applications
SBIR 第一阶段:用于高温蠕变和氢环境应用的氧化物弥散强化高温合金的先进制造
  • 批准号:
    2335531
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
SBIR Phase I: Process for Producing Steel using Super-Pure Iron Ore Powder (SPIOP) and Hydrogen
SBIR 第一阶段:使用超纯铁矿粉 (SPIOP) 和氢气生产钢的工艺
  • 批准号:
    2231649
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Fabrication of 5xxx/7xxx Crossover Alloys: T-Phase Precipitation to Achieve Hydrogen Embrittlement Resistance
5xxx/7xxx 交叉合金的制造:T 相沉淀以实现抗氢脆性
  • 批准号:
    23K04413
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SBIR Phase II: High Energy-Density Hydrogen-Halogen Flow Batteries for Energy Storage
SBIR第二阶段:用于储能的高能量密度氢卤液流电池
  • 批准号:
    2136304
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Cooperative Agreement
SBIR Phase I: Methane Pyrolysis for High Quality Carbon Black and Low-carbon Hydrogen Production
SBIR第一期:甲烷热解生产高品质炭黑和低碳氢气
  • 批准号:
    2151707
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
SBIR Phase II: Conformable Hydrogen Storage for Aviation
SBIR 第二阶段:航空适形储氢
  • 批准号:
    2223187
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Cooperative Agreement
SBIR Phase I: Carbon-Free Hydrogen Production by Plasma Dissociation of Hydrogen Sulfide
SBIR 第一阶段:通过硫化氢的等离子体解离生产无碳氢气
  • 批准号:
    2233170
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
SBIR Phase II: Hydrogen from Hydrogen Sulfide
SBIR 第二阶段:硫化氢制氢
  • 批准号:
    2304259
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Cooperative Agreement
Mechanism of hydrogen-induced phase transformations in Ti-Ni superelastic alloys
Ti-Ni超弹性合金氢致相变机理
  • 批准号:
    23K13540
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Hydrogen/phase transformation-induced cracking: high-resolution X-ray CT with X-ray diffraction
氢/相变引起的裂纹:高分辨率 X 射线 CT 和 X 射线衍射
  • 批准号:
    23H01304
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了