Collaborative Research: AGNES: Algebraic Geometry NorthEastern Series
合作研究:AGNES:代数几何东北系列
基本信息
- 批准号:1650462
- 负责人:
- 金额:$ 3.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-03-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports participation in six AGNES (Algebraic Geometry Northeastern Series) conferences which will be held at Stony Brook University on April 21-23, 2017, at Northeastern University in Fall 2017, at Rutgers University in Spring 2018, at Brown University in Fall 2018, at University of Massachusetts Amherst in Spring 2019, and at Boston College in Fall 2019. AGNES is a semi-annual algebraic geometry meeting organized at a rotating location by an association of northeastern universities. A guiding goal of AGNES is to introduce graduate students to a broad spectrum of current research in algebraic geometry. While meeting this goal, AGNES has become an important center for algebraic geometry in the US. The conference has an extensive record of promoting collaboration and has developed new tools for training and mentoring future leaders in algebraic geometry. These consist of graduate mini-schools, career panels, poster presentations for junior participants (including undergraduate students), and events specifically targeting members of groups that are under-represented in the mathematical sciences.Algebraic geometry is a sub-field of mathematical sciences that studies solution sets of polynomial equations. It has deep connections to many other areas of pure mathematics, such as topology, arithmetic, number theory, differential geometry, dynamical systems, and homological algebra. At the same time algebraic geometry has found important applications in applied mathematics and computer science (computer vision, geometric complexity theory, numerical methods in algebraic statistics, etc). The centerpiece research activity of each AGNES meeting will be 7-8 invited lectures given by speakers showcasing different facets of algebraic geometry. The scientific scope of AGNES will be further expanded by lectures from neighboring mathematical subjects (such as arithmetic geometry, dynamics, complex geometry, and computational geometry) and by the various supporting activities described above. Further information can be found at the conference website: http://www.agneshome.org/
该奖项支持参加六次AGNES(代数几何东北系列)会议,这些会议将于2017年4月21日至23日在斯托尼布鲁克大学举行,2017年秋季在东北大学举行,2018年春季在罗格斯大学举行,2018年秋季在布朗大学举行,2019年春季在马萨诸塞州阿默斯特大学举行,2019年秋季在波士顿学院举行。AGNES是一个半年度的代数几何会议,由东北大学协会轮流组织。AGNES的一个指导目标是向研究生介绍代数几何的广泛研究。在满足这一目标的同时,AGNES已成为美国代数几何的重要中心。会议有促进合作的广泛记录,并开发了新的工具,培训和指导未来的领导人在代数几何。其中包括研究生迷你学校,职业小组,初级参与者(包括本科生)的海报展示,以及专门针对数学科学中代表性不足的群体成员的活动。代数几何是数学科学的一个子领域,研究多项式方程的解集。它与纯数学的许多其他领域有着深刻的联系,如拓扑学、算术、数论、微分几何、动力系统和同调代数。同时代数几何在应用数学和计算机科学(计算机视觉、几何复杂性理论、代数统计中的数值方法等)中找到了重要的应用。每个AGNES会议的核心研究活动将是7-8个邀请演讲者展示代数几何的不同方面。AGNES的科学范围将通过邻近数学学科(如算术几何、动力学、复几何和计算几何)的讲座和上述各种支持活动进一步扩大。更多信息请访问会议网站:http://www.agneshome.org/
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alina Marian其他文献
Sheaves on abelian surfaces and strange duality
- DOI:
10.1007/s00208-008-0262-z - 发表时间:
2008-08-07 - 期刊:
- 影响因子:1.400
- 作者:
Alina Marian;Dragos Oprea - 通讯作者:
Dragos Oprea
The Segre-Verlinde Correspondence for the Moduli Space of Stable Bundles on a Curve
- DOI:
10.1007/s00220-024-05171-8 - 发表时间:
2024-12-09 - 期刊:
- 影响因子:2.600
- 作者:
Alina Marian - 通讯作者:
Alina Marian
Alina Marian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alina Marian', 18)}}的其他基金
Universal Series, Chow Rings, and Dualities in the Moduli Theory of Sheaves
滑轮模量理论中的通用级数、周环和对偶性
- 批准号:
1902310 - 财政年份:2019
- 资助金额:
$ 3.62万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Moduli Spaces, Birational Geometry, and Stability Conditions
FRG:协作研究:模空间、双有理几何和稳定性条件
- 批准号:
1664215 - 财政年份:2017
- 资助金额:
$ 3.62万 - 项目类别:
Standard Grant
Moduli Theory of Sheaves Over Low-Dimensional Varieties
低维变量的滑轮模量理论
- 批准号:
1601605 - 财政年份:2016
- 资助金额:
$ 3.62万 - 项目类别:
Continuing Grant
Aspects of the moduli theory of sheaves and varieties
滑轮和变体模量理论的各个方面
- 批准号:
1303389 - 财政年份:2013
- 资助金额:
$ 3.62万 - 项目类别:
Continuing Grant
Topics in the moduli theory of sheaves
滑轮模量理论的主题
- 批准号:
1242561 - 财政年份:2011
- 资助金额:
$ 3.62万 - 项目类别:
Standard Grant
Topics in the moduli theory of sheaves
滑轮模量理论的主题
- 批准号:
1001604 - 财政年份:2010
- 资助金额:
$ 3.62万 - 项目类别:
Standard Grant
The Geometry of Moduli Spaces of Sheaves
滑轮模空间的几何
- 批准号:
0948296 - 财政年份:2009
- 资助金额:
$ 3.62万 - 项目类别:
Standard Grant
The Geometry of Moduli Spaces of Sheaves
滑轮模空间的几何
- 批准号:
0812030 - 财政年份:2007
- 资助金额:
$ 3.62万 - 项目类别:
Standard Grant
The Geometry of Moduli Spaces of Sheaves
滑轮模空间的几何
- 批准号:
0700742 - 财政年份:2007
- 资助金额:
$ 3.62万 - 项目类别:
Standard Grant
Intersection Theory and Geometric Dualities on Moduli Spaces of Sheaves
滑轮模空间的交集理论与几何对偶性
- 批准号:
0401670 - 财政年份:2004
- 资助金额:
$ 3.62万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: AGNES, Algebraic Geometry NorthEastern Series
合作研究:AGNES、代数几何东北系列
- 批准号:
1937757 - 财政年份:2019
- 资助金额:
$ 3.62万 - 项目类别:
Standard Grant
Collaborative Research: AGNES: Algebraic Geometry NorthEastern Series
合作研究:AGNES:代数几何东北系列
- 批准号:
1937636 - 财政年份:2019
- 资助金额:
$ 3.62万 - 项目类别:
Continuing Grant
Collaborative Research: AGNES: Algebraic Geometry NorthEastern Series
合作研究:AGNES:代数几何东北系列
- 批准号:
1937705 - 财政年份:2019
- 资助金额:
$ 3.62万 - 项目类别:
Continuing Grant
Collaborative Research: AGNES: Algebraic Geometry NorthEastern Series
合作研究:AGNES:代数几何东北系列
- 批准号:
1937524 - 财政年份:2019
- 资助金额:
$ 3.62万 - 项目类别:
Standard Grant
Collaborative Research: AGNES: Algebraic Geometry NorthEastern Series
合作研究:AGNES:代数几何东北系列
- 批准号:
1650256 - 财政年份:2017
- 资助金额:
$ 3.62万 - 项目类别:
Continuing Grant
Collaborative Research: AGNES: Algebraic Geometry NorthEastern Series
合作研究:AGNES:代数几何东北系列
- 批准号:
1651122 - 财政年份:2017
- 资助金额:
$ 3.62万 - 项目类别:
Standard Grant
Collaborative Research: AGNES: Algebraic Geometry NorthEastern Series
合作研究:AGNES:代数几何东北系列
- 批准号:
1651014 - 财政年份:2017
- 资助金额:
$ 3.62万 - 项目类别:
Continuing Grant
Collaborative Research: AGNES: Algebraic Geometry NorthEastern Series
合作研究:AGNES:代数几何东北系列
- 批准号:
1650459 - 财政年份:2017
- 资助金额:
$ 3.62万 - 项目类别:
Continuing Grant
Collaborative Research: AGNES: Algebraic Geometry NorthEastern Series
合作研究:AGNES:代数几何东北系列
- 批准号:
1651082 - 财政年份:2017
- 资助金额:
$ 3.62万 - 项目类别:
Continuing Grant
Collaborative Research: AGNES: Algebraic Geometry NorthEastern Series, April 25-27, 2014
合作研究:AGNES:代数几何东北系列,2014 年 4 月 25-27 日
- 批准号:
1360543 - 财政年份:2014
- 资助金额:
$ 3.62万 - 项目类别:
Continuing Grant