Endpoint Behavior of Modulation Invariant Singular Integrals

调制不变奇异积分的端点行为

基本信息

  • 批准号:
    1650810
  • 负责人:
  • 金额:
    $ 11.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-05-16 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

Harmonic analysis studies how signals (functions) break up into a superposition of basic harmonics--signals with a well-specified duration, intensity and frequency--and how operations (filtering) applied to these components affect the reconstructed signal. Variants of this time-frequency decomposition process are performed in countless real-world applications, such as audio or image compression and filtering, image pattern recognition, data assimilation and denoising. One of the broad objectives of this project is the investigation of the theoretical feasibility threshold of the time-frequency techniques in terms of the relative size and smoothness of the input. An analogous procedure is adopted in tomographic imaging, where a solid body is reconstructed by means of sampling its density along penetrating waves, mathematically described as lines in three-dimensional space. This project will study mathematical toy models of sampling along lines or curves, whose theoretical understanding may play a significant role in the derivation of improved analytical image reconstruction methods. An integral component of the project is the training of graduate and undergraduate students within the active research group in harmonic analysis at Brown University, with the particular intent of attracting young and promising researchers to the field. The central objects of study of this project are modulation-invariant singular integrals and their behavior at or near the boundary of their known boundedness range. The model question, involving Carleson's maximal partial Fourier sum operator, is the characterization of the sharp integrability order sufficient for the almost-everywhere pointwise convergence of the Fourier series of a periodic function. The second, deeply related question concerns the extension of the Lacey-Thiele Holder-type estimates for the bilinear Hilbert transform to the boundary of the known range. Together with his collaborators, the principal investigator has recently obtained the current best results for both problems, relying in particular on a newly developed Calderon-Zygmund decomposition adapted to the modulation-invariant setting. It is expected that further developments of this technique will lead to additional improvements towards the solution of these two central questions, as well as of other significant open problems. A standout question is the extension of the known uniform estimates for the bilinear Hilbert transform to the full expected range of exponents, completing the original program of Calderon for the boundedness of the first commutator. Another central direction of the proposed investigation is the study of singular integral operators with rotational symmetries, a prime example of which is the Hilbert transform along a smooth vector field in the plane, by means of multiparameter time-frequency analysis techniques. Further improvements of the aforementioned techniques are also expected to impact on several questions concerning summability of multiple Fourier series.
谐波分析研究信号(函数)如何分解为基本谐波(具有指定持续时间、强度和频率的信号)的叠加,以及应用于这些分量的操作(滤波)如何影响重建信号。这种时频分解过程的变体在无数的实际应用中被执行,例如音频或图像压缩和滤波、图像模式识别、数据同化和去噪。 该项目的主要目标之一是研究时频技术在输入的相对大小和平滑度方面的理论可行性阈值。在断层摄影成像中采用类似的过程,其中通过沿着穿透波沿着对其密度进行采样来重建固体,穿透波在数学上被描述为三维空间中的线。 本计画将研究沿着直线或曲线取样的数学玩具模型,其理论上的了解可能在衍生改良的解析影像重建方法上扮演重要的角色。 该项目的一个组成部分是在布朗大学谐波分析积极研究小组内培训研究生和本科生,特别是为了吸引年轻和有前途的研究人员进入该领域。该项目的主要研究对象是调制不变奇异积分及其在已知有界范围边界处或附近的行为。模型的问题,涉及Carleson的最大部分傅立叶和算子,是充分的几乎处处逐点收敛的傅立叶级数的周期函数的尖锐的可积阶的表征。第二个密切相关的问题涉及将双线性Hilbert变换的Lacey-Thiele Holder型估计扩展到已知范围的边界。与他的合作者一起,主要研究人员最近获得了目前最好的结果,这两个问题,特别是依赖于新开发的卡尔德龙-齐格蒙德分解适应调制不变的设置。预计这种技术的进一步发展将导致对这两个中心问题的解决方案,以及其他重要的开放问题的进一步改进。一个突出的问题是扩展的双线性希尔伯特变换的指数的全预期范围内的已知的统一估计,完成原来的计划卡尔德龙的有界性的第一个换向器。建议调查的另一个中心方向是研究奇异积分算子的旋转对称性,其中一个主要的例子是希尔伯特变换沿着一个光滑的向量场在平面上,通过多参数时频分析技术。上述技术的进一步改进,预计也将影响到几个问题的多个傅立叶级数的求和。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Francesco DiPlinio其他文献

Francesco DiPlinio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Francesco DiPlinio', 18)}}的其他基金

Singular Integrals with Modulation or Rotational Symmetry
具有调制或旋转对称性的奇异积分
  • 批准号:
    1800628
  • 财政年份:
    2018
  • 资助金额:
    $ 11.12万
  • 项目类别:
    Standard Grant
Endpoint Behavior of Modulation Invariant Singular Integrals
调制不变奇异积分的端点行为
  • 批准号:
    1500449
  • 财政年份:
    2015
  • 资助金额:
    $ 11.12万
  • 项目类别:
    Standard Grant

相似国自然基金

greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

Induction of courageous behavior by modulation of dopamine release in the brain
通过调节大脑中多巴胺的释放来诱导勇敢行为
  • 批准号:
    23K18256
  • 财政年份:
    2023
  • 资助金额:
    $ 11.12万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Dissecting stress modulation of pnVTA nociceptin peptide-mediated approach-avoidance behavior
剖析 pnVTA 伤害感受肽介导的趋避行为的应激调节
  • 批准号:
    10676589
  • 财政年份:
    2023
  • 资助金额:
    $ 11.12万
  • 项目类别:
2023 Modulation of Neural Circuits and Behavior Gordon Research Conference & Gordon Research Seminar
2023年神经回路与行为调节戈登研究会议
  • 批准号:
    10682921
  • 财政年份:
    2023
  • 资助金额:
    $ 11.12万
  • 项目类别:
Role of brain Avpr1a-expressing neurons in modulation of social behavior
大脑表达 Avpr1a 的神经元在调节社会行为中的作用
  • 批准号:
    10737195
  • 财政年份:
    2023
  • 资助金额:
    $ 11.12万
  • 项目类别:
Muscarinic modulation of RDoC constructs in primate behavior and fronto-striatal circuits
灵长类行为和额纹状体回路中 RDoC 结构的毒蕈碱调节
  • 批准号:
    10599997
  • 财政年份:
    2022
  • 资助金额:
    $ 11.12万
  • 项目类别:
Muscarinic modulation of RDoC constructs in primate behavior and fronto-striatal circuits
灵长类行为和额纹状体回路中 RDoC 结构的毒蕈碱调节
  • 批准号:
    10419231
  • 财政年份:
    2022
  • 资助金额:
    $ 11.12万
  • 项目类别:
Modulation of social behavior mediated by gut microbiota
肠道微生物群介导的社会行为调节
  • 批准号:
    22H02947
  • 财政年份:
    2022
  • 资助金额:
    $ 11.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Decoding Neuropeptide S Modulation of Reward Seeking Behavior
解码神经肽 S 对奖励寻求行为的调节
  • 批准号:
    10536518
  • 财政年份:
    2022
  • 资助金额:
    $ 11.12万
  • 项目类别:
Roles of hemocytes and bioactive lipids in the modulation of neuronal excitability and seizure behavior in Drosophila voltage-gated sodium channel mutants
血细胞和生物活性脂质在果蝇电压门控钠通道突变体神经元兴奋性和癫痫行为调节中的作用
  • 批准号:
    10559686
  • 财政年份:
    2022
  • 资助金额:
    $ 11.12万
  • 项目类别:
Roles of hemocytes and bioactive lipids in the modulation of neuronal excitability and seizure behavior in Drosophila voltage-gated sodium channel mutants
血细胞和生物活性脂质在果蝇电压门控钠通道突变体神经元兴奋性和癫痫行为调节中的作用
  • 批准号:
    10433305
  • 财政年份:
    2022
  • 资助金额:
    $ 11.12万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了