CAREER: Hashing and Sketching Algorithms for Resource-Frugal Machine Learning
职业:用于资源节约型机器学习的哈希和草图算法
基本信息
- 批准号:1652131
- 负责人:
- 金额:$ 49.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-05-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modern applications are constantly dealing with datasets at terabyte scale, and the anticipation is that very soon it will reach petabyte levels. The size and dimensionality of current datasets have made machine learning (ML) models significantly large and complex, which adds to the existing problems. Classical approaches to learning and inference fail to address new concerns of computational resources, storage limitations, network communication constraints, energy efficiency, real-time latency, etc. This project focuses on basic design and implementation of (exponentially) resource-frugal and scalable machine learning algorithms which are ideally suited for current big-data constraints.This project leverages probabilistic hashing techniques for advancing the state-of-the-art machine learning algorithms. The focus is on redesigning existing machine learning pipelines to make them amenable to the hashing speedup. Apart from being exponentially cheap, the designed algorithms are also massively parallelizable. The three primary objectives are: 1) Computationally Efficient Deep-Learning and Kernel-Based Learning via Hashing, 2) Sketching Algorithms for (Exponentially) Compressing Machine Learning Models, and 3) Improving Efficiency of Hash Functions. This project capitalizes on several recent ideas, including asymmetric hashing, hash-based kernels, densified hashing schemes, sub-linear adaptive sampling, and adaptive sketching, to push learning algorithms to the extreme-scale. By creating a unique bridge between probabilistic hashing and machine learning, this project further enhances the current understanding of tradeoffs involving computations, space, and accuracy.
现代应用程序不断处理TB级的数据集,预计很快就会达到PB级。 当前数据集的大小和维度使得机器学习(ML)模型变得非常庞大和复杂,这增加了现有的问题。学习和推理的经典方法未能解决计算资源、存储限制、网络通信约束、能源效率、实时延迟本项目主要研究(指数)资源节约和可扩展的机器学习算法,非常适合当前的大数据约束。该项目利用概率哈希技术来推进状态-最先进的机器学习算法重点是重新设计现有的机器学习管道,使它们能够适应哈希加速。除了成本呈指数级下降外,所设计的算法还可以大规模并行化。三个主要目标是:1)通过哈希实现计算效率高的深度学习和基于内核的学习,2)(指数)压缩机器学习模型的草图算法,3)提高哈希函数的效率。该项目利用了几个最新的想法,包括非对称哈希,基于哈希的内核,加密哈希方案,次线性自适应采样和自适应草图,将学习算法推向极端规模。 通过在概率哈希和机器学习之间建立一个独特的桥梁,该项目进一步增强了当前对计算、空间和准确性权衡的理解。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Arrays of (locality-sensitive) Count Estimators (ACE): Anomaly Detection on the Edge
- DOI:10.1145/3178876.3186056
- 发表时间:2018-04
- 期刊:
- 影响因子:0
- 作者:Chen Luo;Anshumali Shrivastava
- 通讯作者:Chen Luo;Anshumali Shrivastava
Angular Visual Hardness
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Randomized Algorithms Accelerated over CPU-GPU for Ultra-High Dimensional Similarity Search
- DOI:10.1145/3183713.3196925
- 发表时间:2018-05
- 期刊:
- 影响因子:0
- 作者:Yiqiu Wang;Anshumali Shrivastava;Jonathan Wang;Junghee Ryu
- 通讯作者:Yiqiu Wang;Anshumali Shrivastava;Jonathan Wang;Junghee Ryu
Scalable and Sustainable Deep Learning via Randomized Hashing
- DOI:10.1145/3097983.3098035
- 发表时间:2016-02
- 期刊:
- 影响因子:0
- 作者:Ryan Spring;Anshumali Shrivastava
- 通讯作者:Ryan Spring;Anshumali Shrivastava
Adaptive Learned Bloom Filter (Ada-BF): Efficient Utilization of the Classifier with Application to Real-Time Information Filtering on the Web
自适应学习布隆过滤器 (Ada-BF):高效利用分类器并应用于 Web 上的实时信息过滤
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Dai, Z;Shrivastava, A.
- 通讯作者:Shrivastava, A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anshumali Shrivastava其他文献
International Conference on Robotics and Automation ( ICRA ) , May 2019 Using Local Experiences for Global Motion Planning
国际机器人与自动化会议 ( ICRA ),2019 年 5 月 利用本地经验进行全球运动规划
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Constantinos Chamzas;Anshumali Shrivastava;L. Kavraki - 通讯作者:
L. Kavraki
Beyond Convolutions: A Novel Deep Learning Approach for Raw Seismic Data Ingestion
超越卷积:一种用于原始地震数据摄取的新型深度学习方法
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Zhaozhuo Xu;Aditya Desai;Menal Gupta;A. Chandran;A. Vial;Anshumali Shrivastava - 通讯作者:
Anshumali Shrivastava
Location detection for navigation using IMUs with a map through coarse-grained machine learning
通过粗粒度机器学习,使用 IMU 和地图进行导航位置检测
- DOI:
10.23919/date.2017.7927040 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
E. J. Jose Gonzalez;Chen Luo;Anshumali Shrivastava;K. Palem;Yongshik Moon;Soonhyun Noh;Daedong Park;Seongsoo Hong - 通讯作者:
Seongsoo Hong
Density Sketches for Sampling and Estimation
用于采样和估计的密度草图
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Aditya Desai;Benjamin Coleman;Anshumali Shrivastava - 通讯作者:
Anshumali Shrivastava
Jaccard Affiliation Graph (JAG) Model For Explaining Overlapping Community Behaviors
用于解释重叠社区行为的 Jaccard 隶属图 (JAG) 模型
- DOI:
10.1109/asonam.2018.8508742 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Chen Luo;Anshumali Shrivastava - 通讯作者:
Anshumali Shrivastava
Anshumali Shrivastava的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anshumali Shrivastava', 18)}}的其他基金
BIGDATA: F: Collaborative Research: Theory and Practice of Randomized Algorithms for Ultra-Large-Scale Signal Processing
BIGDATA:F:协作研究:超大规模信号处理随机算法的理论与实践
- 批准号:
1838177 - 财政年份:2018
- 资助金额:
$ 49.91万 - 项目类别:
Standard Grant
相似海外基金
Scalable and Deep Anomaly Detection from Big Data with Similarity Hashing
通过相似性哈希从大数据中进行可扩展的深度异常检测
- 批准号:
DE210101458 - 财政年份:2021
- 资助金额:
$ 49.91万 - 项目类别:
Discovery Early Career Researcher Award
Deep attribute-aware hashing for cross retrieval
用于交叉检索的深度属性感知哈希
- 批准号:
DP190102353 - 财政年份:2019
- 资助金额:
$ 49.91万 - 项目类别:
Discovery Projects
Application of Perfect-code to hashing and mathematical analysis
完美码在散列和数学分析中的应用
- 批准号:
19H04140 - 财政年份:2019
- 资助金额:
$ 49.91万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Othello Hashing and Its Applications to Scalable and Dynamic Network Forwarding and Functions
职业:奥赛罗哈希及其在可扩展和动态网络转发和功能中的应用
- 批准号:
1750704 - 财政年份:2018
- 资助金额:
$ 49.91万 - 项目类别:
Continuing Grant
Large-scale spatio-temporal data hashing for efficient data analytics
大规模时空数据哈希以实现高效数据分析
- 批准号:
DP180100966 - 财政年份:2018
- 资助金额:
$ 49.91万 - 项目类别:
Discovery Projects
CRII: SaTC: Towards the Development of Stronger Memory-Hard Functions for Secure Password Hashing
CRII:SaTC:致力于开发更强的内存硬函数以实现安全密码散列
- 批准号:
1755708 - 财政年份:2018
- 资助金额:
$ 49.91万 - 项目类别:
Standard Grant
Locality sensitive hashing for big data
大数据的局部敏感哈希
- 批准号:
DP170103710 - 财政年份:2017
- 资助金额:
$ 49.91万 - 项目类别:
Discovery Projects
Scalable Cross-Media Hashing for Searching Heterogeneous Data Sources
用于搜索异构数据源的可扩展跨媒体哈希
- 批准号:
DP160104058 - 财政年份:2016
- 资助金额:
$ 49.91万 - 项目类别:
Discovery Projects
AitF: FULL: Collaborative Research: Better Hashing for Applications: From Nuts & Bolts to Asymptotics
AitF:完整:协作研究:更好的应用程序哈希:来自坚果
- 批准号:
1535795 - 财政年份:2015
- 资助金额:
$ 49.91万 - 项目类别:
Standard Grant
AitF: FULL: Collaborative Research: Better Hashing for Applications: From Nuts & Bolts to Asymptotics
AitF:完整:协作研究:更好的应用程序哈希:来自坚果
- 批准号:
1535821 - 财政年份:2015
- 资助金额:
$ 49.91万 - 项目类别:
Standard Grant














{{item.name}}会员




