CAREER: Mineral growth by nanoparticle aggregation: Aluminosilicate minerals
职业:纳米粒子聚集的矿物生长:铝硅酸盐矿物
基本信息
- 批准号:1652237
- 负责人:
- 金额:$ 55.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this CAREER project is to develop an innovative research program at the forefront of the science of nanoparticle aggregation-based mineral growth. Aluminosilicate minerals are abundant in nature and among the most reactive inorganic constituents in soils and sediments. Nanosized aluminosilicates such as imogolite, allophane and halloysite, along with related clay minerals such as kaolinite, affect the physical and chemical properties of soils due to interactions with water, nutrients (e.g., Phosphorus, Nitrogen and Carbon), heavy metal contaminants, and pathogens. Learning how aluminosilicate minerals form at environmental conditions will lead to new and improved strategies to enhance soil fertility and to predict pollutant transport and fate. New insights into aluminosilicate growth processes will lead to novel synthesis methods for new earth-abundant metal catalysts, as well as engineered materials for water treatment applications and long-term nuclear waste storage. Aluminosilicate nanoparticles with well-defined characteristic shapes (tubes, hollow spheres, plates, etc.) are an intriguing alternative to carbon-based nanoparticles for medical applications such as drug delivery and functional composite materials. This project will advance the broader scientific and technological community by distributing and disseminating novel research methods and results through an integrated program of undergraduate and graduate teaching, scientific publications and presentations (including short courses and conference symposia), general outreach, and student research training. This effort will use new tools and techniques to understand crystallization science, including in silico crystal structure visualization and desktop 3D printing. These tools will be applied as part of educational curriculum for undergraduate and graduate coursework, and will be available to others at no cost on a new crystallization knowledge and discovery website.The primary research objective of this CAREER project is to understand how nanosized aluminosilicate minerals form at low-temperature conditions via the aggregation and assembly of precursor nanoparticles. This will be achieved using a three-phase approach that includes new systematic synthesis methods and characterization by a suite of complementary synchrotron and laboratory methods, real time crystallization studies using custom microfluidics devices, and process modeling. High-resolution electron microscopy combined with new synthesis strategies using tracer elements as chemical labels will be used to track how nanoparticle precursors evolve during classical and nonclassical growth. Real-time studies of mineral growth will use state-of-the-art scattering and spectroscopic methods along with custom microfluidics devices fabricated by desktop 3D printing. Experimental results from complementary analytical characterization methods will be combined with theory and computation to produce molecular-scale models of structural and physicochemical characteristics of the aluminosilicate nanoparticles and precursors of aluminosilicate minerals. This will lead to new conceptual models for the processes of aggregation and precursor attachment. The fundamental knowledge generated by this research on aluminosilicates will help us understand clay formation in nature, and will provide the foundation for continuing research on processes that lead to mineral formation.
这个CAREER项目的目标是在基于纳米颗粒聚集的矿物生长科学的最前沿开发一个创新的研究计划。铝硅酸盐矿物在自然界中含量丰富,是土壤和沉积物中最具活性的无机组分之一。纳米尺寸的铝硅酸盐如伊毛沸石、水铝英石和埃洛石,沿着相关的粘土矿物如高岭石,由于与水、营养物(例如,磷、氮和碳)、重金属污染物和病原体。了解铝硅酸盐矿物如何在环境条件下形成,将导致新的和改进的战略,以提高土壤肥力和预测污染物的运输和命运。对铝硅酸盐生长过程的新见解将导致新的地球丰富的金属催化剂的新合成方法,以及用于水处理应用和长期核废料储存的工程材料。具有明确定义的特征形状(管、空心球、板等)的铝硅酸盐纳米颗粒是一种有趣的替代碳基纳米粒子的医疗应用,如药物输送和功能复合材料。该项目将通过本科和研究生教学,科学出版物和演示文稿(包括短期课程和会议研讨会),一般推广和学生研究培训的综合计划,通过分发和传播新的研究方法和成果,推动更广泛的科学和技术界。这项工作将使用新的工具和技术来理解结晶科学,包括计算机晶体结构可视化和桌面3D打印。这些工具将作为本科生和研究生课程的一部分,并将在一个新的结晶知识和发现网站上免费提供给其他人。这个CAREER项目的主要研究目标是了解纳米硅铝酸盐矿物是如何在低温条件下通过前体纳米颗粒的聚集和组装形成的。这将使用一个三阶段的方法,包括新的系统的合成方法和一套互补的同步加速器和实验室方法,真实的时间结晶研究,使用自定义微流体设备和过程建模的表征。高分辨率电子显微镜结合新的合成策略,使用示踪元素作为化学标签将被用来跟踪纳米粒子前体如何演变过程中的经典和非经典的增长。矿物生长的实时研究将使用最先进的散射和光谱方法,沿着通过桌面3D打印制造的定制微流体设备。从互补的分析表征方法的实验结果将与理论和计算相结合,以产生铝硅酸盐纳米颗粒和铝硅酸盐矿物的前体的结构和物理化学特性的分子尺度模型。这将导致新的概念模型的过程中的聚集和前体附着。这项关于铝硅酸盐的研究所产生的基础知识将帮助我们了解自然界中的粘土形成,并将为继续研究导致矿物形成的过程提供基础。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Size and Strain of Zinc Sulfide Nanoparticles Altered by Interaction with Organic Molecules
硫化锌纳米颗粒的尺寸和应变因与有机分子的相互作用而改变
- DOI:10.1021/acs.est.2c05268
- 发表时间:2022
- 期刊:
- 影响因子:11.4
- 作者:Le Bars, Maureen;Levard, Clément;Legros, Samuel;Vidal, Vladimir;Fernandez-Martinez, Alejandro;Michel, F. Marc;Thill, Antoine;Prelot, Benedicte;Dublet-Adli, Gabrielle;Borschneck, Daniel
- 通讯作者:Borschneck, Daniel
Suitability of 3D-Printed devices for low-temperature geochemical T experiments
3D 打印设备对低温地球化学 T 实验的适用性
- DOI:10.1016/j.apgeochem.2018.08.012
- 发表时间:2018
- 期刊:
- 影响因子:3.4
- 作者:Kletetschka, K;Rimstidt, J Donald;Long, Timothy E;Michel, F Marc
- 通讯作者:Michel, F Marc
Oligo( l -glutamic acids) in Calcium Phosphate Precipitation: Chain Length Effect
磷酸钙沉淀中的低聚(L-谷氨酸):链长效应
- DOI:10.1021/acs.jpcb.0c01689
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Ustriyana, Putu;Harmon, Emma;Chen, Kexun;Michel, F. Marc;Sahai, Nita
- 通讯作者:Sahai, Nita
Quantitative measurement of corrosion at the nanoscale by in situ spectral modulation interferometry
原位光谱调制干涉法定量测量纳米尺度腐蚀
- DOI:10.1016/j.matchar.2022.111992
- 发表时间:2022
- 期刊:
- 影响因子:4.7
- 作者:Fanijo, Ebenezer O.;Thomas, Joseph G.;Zhu, Yizheng;Esquivel Guerrero, Javier;Hosking, Niamh C.;Cai, Wenjun;Michel, F. Marc;Brand, Alexander S.
- 通讯作者:Brand, Alexander S.
3D printed mixed flow reactor for geochemical rate measurements
- DOI:10.1016/j.apgeochem.2017.11.008
- 发表时间:2018-02
- 期刊:
- 影响因子:3.4
- 作者:F. M. Michel;J. Rimstidt;Karel Kletetschka
- 通讯作者:F. M. Michel;J. Rimstidt;Karel Kletetschka
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Frederick Marc Michel其他文献
Frederick Marc Michel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Frederick Marc Michel', 18)}}的其他基金
Mineral Formation by Cluster Self-Assembly: Schwertmannite as a Partially Crystallized Nanomineral
通过簇自组装形成矿物:施韦特曼石作为部分结晶的纳米矿物
- 批准号:
1451996 - 财政年份:2015
- 资助金额:
$ 55.96万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Using K-feldspar megacryst and mineral inclusion T-X-t histories to assess batholith growth and evolution in the Tuolumne intrusive complex, CA
合作研究:利用钾长石巨晶和矿物包裹体 T-X-t 历史来评估加利福尼亚州图奥勒米侵入岩杂岩的岩基生长和演化
- 批准号:
2223333 - 财政年份:2023
- 资助金额:
$ 55.96万 - 项目类别:
Continuing Grant
Mineral Coated Microparticles for Stabilization and Delivery of Complexed mRNA for Healing of Long Bone Defects
用于稳定和递送复合 mRNA 的矿物涂层微粒,用于治疗长骨缺损
- 批准号:
10464358 - 财政年份:2023
- 资助金额:
$ 55.96万 - 项目类别:
Advances in Mineral Metabolism (AIMM) Annual Meeting
矿物质代谢进展 (AIMM) 年会
- 批准号:
10752804 - 财政年份:2023
- 资助金额:
$ 55.96万 - 项目类别:
Collaborative Research: RUI: Using K-feldspar megacryst and mineral inclusion T-X-t histories to assess batholith growth and evolution in the Tuolumne intrusive complex, CA
合作研究:RUI:利用钾长石巨晶和矿物包裹体 T-X-t 历史来评估加利福尼亚州图奥勒米侵入岩杂岩的岩基生长和演化
- 批准号:
2223332 - 财政年份:2023
- 资助金额:
$ 55.96万 - 项目类别:
Standard Grant
Targeting Inflammation to Improve FGF23-mediated Mineral Metabolism in CKD
靶向炎症以改善 CKD 中 FGF23 介导的矿物质代谢
- 批准号:
10750425 - 财政年份:2023
- 资助金额:
$ 55.96万 - 项目类别:
The influence of irisin/FNDC5 on bone mineral density and fracture risk in individuals with spinal cord injury
鸢尾素/FNDC5对脊髓损伤个体骨矿物质密度和骨折风险的影响
- 批准号:
10609491 - 财政年份:2022
- 资助金额:
$ 55.96万 - 项目类别:
Mineralomics: Designing mineral based therapeutics to control and direct cell function
矿物组学:设计基于矿物的疗法来控制和指导细胞功能
- 批准号:
10402045 - 财政年份:2021
- 资助金额:
$ 55.96万 - 项目类别:
Mineralomics: Designing mineral based therapeutics to control and direct cell function
矿物组学:设计基于矿物的疗法来控制和指导细胞功能
- 批准号:
10402044 - 财政年份:2021
- 资助金额:
$ 55.96万 - 项目类别:
Reducing Inflammation After Spinal Cord Injury Via Mineral Coated Microparticles Releasing Anti-Inflammatory Cytokines
通过释放抗炎细胞因子的矿物质涂层微粒减少脊髓损伤后的炎症
- 批准号:
10357988 - 财政年份:2021
- 资助金额:
$ 55.96万 - 项目类别:
Vitamin D Genetics and Racial Differences in Pediatric Chronic Kidney Disease-Mineral and Bone Disorder
儿科慢性肾脏病 - 矿物质和骨骼疾病的维生素 D 遗传学和种族差异
- 批准号:
10380577 - 财政年份:2020
- 资助金额:
$ 55.96万 - 项目类别: