CAREER: Continual Automated Refinement of Human Computation Systems
职业:人类计算系统的持续自动改进
基本信息
- 批准号:1652537
- 负责人:
- 金额:$ 54.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-02-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research aims to improve automated tools for the application of human and computational problem-solving systems. This will lead to generalized techniques for data-driven modeling and optimization of the process of designing such systems, reducing the workload necessary to create successful ones and broadening the scope of problem domains to which massive amounts of human brainpower can be applied. Despite the vast computational power currently available, a broad range of important problems still rely on human reasoning or intuition to solve. In cases where algorithms are either unknown or computationally intractable, human computation has recently arisen as a means to apply human skills to advance solutions to problems neither humans nor computers could solve alone. By bringing human creativity, problem solving, and perspective to bear, humans and computers combined can solve previously unsolvable problems. Additionally, these systems create a new pathway for involvement in science - a new way for people to contribute towards problems that are important to them. By democratizing science, we involve those who may not otherwise have had such a means. Finally, this research can contribute to our understanding of how to best train people in solving challenging problems. This work seeks to automate one aspect of the iterative refinement of human computation systems: improving the assignment of tasks to contributors. The basic approach is to construct a model of contributors and tasks, based on skill ratings and skill chains, which can be used to assign contributors an appropriate task to complete. This model will automatically refine the skill estimates and assignments over time based on data, improving both user experience and problem solving outcomes. This approach in broken down into three challenge areas: 1) developing a unified skill model that combines skill atoms and skill ratings, then using that skill model for 2) crafting a difficulty curve tailored for each participant, and 3) evaluating design decisions. The approach will build on existing multi-person matchmaking systems, validated in multiple human computation systems.
本研究旨在改进人类和计算问题解决系统应用的自动化工具。这将导致数据驱动建模和优化设计此类系统的过程的通用技术,减少创建成功系统所需的工作量,并扩大可应用大量人类脑力的问题领域的范围。尽管目前有巨大的计算能力,但许多重要问题仍然依赖于人类的推理或直觉来解决。在算法未知或计算困难的情况下,人类计算最近出现了一种应用人类技能来推进人类或计算机都无法单独解决的问题的解决方案的手段。通过发挥人类的创造力、解决问题的能力和洞察力,人类和计算机的结合可以解决以前无法解决的问题。此外,这些系统为参与科学创造了一条新的途径--一种让人们为解决对他们来说重要的问题做出贡献的新方式。通过使科学民主化,我们让那些本来没有这种手段的人参与进来。最后,这项研究有助于我们了解如何最好地训练人们解决具有挑战性的问题。这项工作旨在自动化人类计算系统的迭代改进的一个方面:改进任务分配给贡献者。基本方法是基于技能评级和技能链构建贡献者和任务的模型,该模型可用于为贡献者分配要完成的适当任务。该模型将根据数据自动优化技能估计和分配,从而改善用户体验和解决问题的结果。这种方法分为三个挑战领域:1)开发一个统一的技能模型,结合技能原子和技能评级,然后使用该技能模型2)为每个参与者量身定制难度曲线,以及3)评估设计决策。该方法将建立在现有的多人匹配系统上,并在多个人类计算系统中得到验证。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluating and Comparing Skill Chains and Rating Systems for Dynamic Difficulty Adjustment
评估和比较动态难度调整的技能链和评级系统
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Sarkar, Anurag;Cooper, Seth
- 通讯作者:Cooper, Seth
Transforming Game Difficulty Curves using Function Composition
使用函数组合变换游戏难度曲线
- DOI:10.1145/3290605.3300781
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Sarkar, Anurag;Cooper, Seth
- 通讯作者:Cooper, Seth
Predicting Human Computation Game Scores with Player Rating Systems
使用玩家评分系统预测人类计算游戏得分
- DOI:10.1007/f978-3-319-66715-7_31
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Williams, Michael;Sarkar, Anurag;Cooper, Seth
- 通讯作者:Cooper, Seth
Inferring and Comparing Game Difficulty Curves using Player-vs-Level Match Data.
使用玩家与级别的匹配数据推断和比较游戏难度曲线。
- DOI:10.1109/cig.2019.8848102
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Sarkar,Anurag;Cooper,Seth
- 通讯作者:Cooper,Seth
Ordering Levels in Human Computation Games using Playtraces and Level Structure
使用 Playtraces 和关卡结构对人类计算游戏中的关卡进行排序
- DOI:10.1109/cog51982.2022.9893702
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Sarkar, Anurag;Cooper, Seth
- 通讯作者:Cooper, Seth
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Seth Cooper其他文献
Demographic variables for patients who did and didn ’ t report problems filling prescriptions
报告配药问题和未报告配药问题的患者的人口统计变量
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Firas Khatib;A. Desfosses;B. Koepnick;J. Flatten;Zoran Popovic;D. Baker;Seth Cooper;I. Gutsche;S. Horowitz - 通讯作者:
S. Horowitz
Crystal structure of a monomeric retroviral protease solved by protein folding game players
蛋白质折叠游戏玩家解析单体逆转录病毒蛋白酶的晶体结构
- DOI:
10.1038/nsmb0312-364b - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Firas Khatib;F. DiMaio;Seth Cooper;Maciej Kazmierczyk;M. Gilski;S. Krzywda;Helena Zábranská;I. Pichová;James M. Thompson;Zoran Popovic;M. Jaskólski;D. Baker - 通讯作者:
D. Baker
Sturgeon: Tile-Based Procedural Level Generation via Learned and Designed Constraints
- DOI:
10.1609/aiide.v18i1.21944 - 发表时间:
2022-10 - 期刊:
- 影响因子:0
- 作者:
Seth Cooper - 通讯作者:
Seth Cooper
Desire Path-Inspired Procedural Placement of Coins in a Platformer Game
平台游戏中受欲望路径启发的硬币程序放置
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Anurag Sarkar;Riddhi Padte;Jeffrey Cao;Seth Cooper - 通讯作者:
Seth Cooper
Segment-wise Level Generation using Iterative Constrained Extension
使用迭代约束扩展的分段级别生成
- DOI:
10.1109/cog57401.2023.10333222 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Hao Mao;Seth Cooper - 通讯作者:
Seth Cooper
Seth Cooper的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Seth Cooper', 18)}}的其他基金
CHS: Small: Data-Driven Retention in Crowdsourced Image Analysis and Mapping
CHS:小型:众包图像分析和绘图中的数据驱动保留
- 批准号:
1816426 - 财政年份:2018
- 资助金额:
$ 54.68万 - 项目类别:
Standard Grant
CI-EN: Collaborative Research: Enhancement of Foldit, a Community Infrastructure Supporting Research on Knowledge Discovery Via Crowdsourcing in Computational Biology
CI-EN:协作研究:Foldit 的增强,Foldit 是一个支持计算生物学中通过众包进行知识发现研究的社区基础设施
- 批准号:
1629879 - 财政年份:2016
- 资助金额:
$ 54.68万 - 项目类别:
Standard Grant
相似海外基金
CRII: CSR: Enabling On-Device Continual Learning through Enhancing Efficiency of Computing, Memory, and Data
CRII:CSR:通过提高计算、内存和数据的效率实现设备上的持续学习
- 批准号:
2348376 - 财政年份:2024
- 资助金额:
$ 54.68万 - 项目类别:
Standard Grant
CAREER: Continual Learning with Evolving Memory, Soft Supervision, and Cross-Domain Knowledge - Foundational Theory and Advanced Algorithms
职业:利用进化记忆、软监督和跨领域知识进行持续学习——基础理论和高级算法
- 批准号:
2338506 - 财政年份:2024
- 资助金额:
$ 54.68万 - 项目类别:
Continuing Grant
CAREER: Towards Continual Learning on Evolving Graphs: from Memorization to Generalization
职业:走向演化图的持续学习:从记忆到泛化
- 批准号:
2338878 - 财政年份:2024
- 资助金额:
$ 54.68万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Small: Expediting Continual Online Learning on Edge Platforms through Software-Hardware Co-designs
协作研究:企业社会责任:小型:通过软硬件协同设计加快边缘平台上的持续在线学习
- 批准号:
2312157 - 财政年份:2023
- 资助金额:
$ 54.68万 - 项目类别:
Standard Grant
FuSe: Co-designing Continual-Learning Edge Architectures with Hetero-Integrated Silicon-CMOS and Electrochemical Random-Access Memory
FuSe:利用异质集成硅 CMOS 和电化学随机存取存储器共同设计持续学习边缘架构
- 批准号:
2329096 - 财政年份:2023
- 资助金额:
$ 54.68万 - 项目类别:
Continuing Grant
Towards Real-world Continual Learning on Unrestricted Task Steams
在不受限制的任务流上实现现实世界的持续学习
- 批准号:
DE230101591 - 财政年份:2023
- 资助金额:
$ 54.68万 - 项目类别:
Discovery Early Career Researcher Award
Development of an sEMG-based Human-Computer Interface Utilizing Deep Transfer Learning and Continual Learning
利用深度迁移学习和持续学习开发基于表面肌电图的人机界面
- 批准号:
23H03445 - 财政年份:2023
- 资助金额:
$ 54.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
MultiTasking and Continual Learning for Audio Sensing Tasks on Resource-Constrained Platforms
资源受限平台上音频传感任务的多任务处理和持续学习
- 批准号:
EP/X01200X/1 - 财政年份:2023
- 资助金额:
$ 54.68万 - 项目类别:
Research Grant
IMR: MM-1C: Enabling Continual Passive Estimation of Performance of Internet Transfers: Online Measurement and Classification Methods
IMR:MM-1C:实现互联网传输性能的持续被动估计:在线测量和分类方法
- 批准号:
2319511 - 财政年份:2023
- 资助金额:
$ 54.68万 - 项目类别:
Standard Grant
A study on environmental sound analysis based on unified and continual learning
基于统一持续学习的环境声分析研究
- 批准号:
23K16908 - 财政年份:2023
- 资助金额:
$ 54.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists