CAREER:Quantifying Radiation Damage in Metals with Wigner Energy Spectral Fingerprints
职业:利用维格纳能谱指纹量化金属的辐射损伤
基本信息
- 批准号:1654548
- 负责人:
- 金额:$ 64.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-Technical The concept of "damage" to a metal remains difficult to quantify. Metals are among our most important structural materials, providing the backbone to everything from buildings, to bridges, to nuclear reactors. If we had a universal way to measure damage, we would be able to better predict when metals would fail, measure their degradation during service, and design new metals to be both longer-lasting and more economical. The use of stored energy fingerprints is proposed as a way to quantify damage to metals from any damaging process. We focus on radiation damage as an ideal way to make all the types of defects found in metals. A two-pronged experimental and simulation approach will be used to quantify and understand these stored energy fingerprints, relating them directly to the defects created by damage. Immediate applications of this work range from reconciling the differences between ion and neutron irradiation, to predicting material property changes due to radiation damage, to verifying the historical usage of uranium enrichment centrifuges. This enhanced understanding will also be the key to lowering the barriers to its study, creating completely new opportunities for both hands-on instruction and inclusion of more underrepresented minority (URM) students into what is currently one of the least diverse fields in STEM.Technical Our ability to understand how materials respond to damage is limited by our lack of understanding about the precise populations of microstructural defects created during damage processes. Nowhere is this issue more prevalent than in the field of radiation materials science, where the lack of a measurable unit of radiation damage continues to obfuscate the quantitative mechanisms responsible for the degradation of material properties under ionizing irradiation. Were the full populations of every defect in a damaged material to be known, then its material properties could be predicted with existing structure-property relations. We propose to use stored energy fingerprints to visualize the full plethora of defects resulting from damage of any kind, particularly irradiation. We draw inspiration from a long-neglected idea stating that radiation damage should store energy like amorphization or cold work. This idea is extended to describe all forms of microstructural damage in metals, in a measurable way which reveals the defects responsible. Using time-accelerated parallel replica dynamics simulations and ultra-fast nanocalorimetric measurements, we will directly link simulated and measured stored energy releases at the mesoscale, with atomistic understanding. This will enable a posteriori measurements of stored energy fingerprints of damaged metals, revealing the atomic configurations and quantities of defects responsible. Thus we seek to provide the full picture of defects resulting from damage, demonstrate a method to measure them, explain their evolution using atomistic simulations, and create unifying theories to predict the defect structures and resultant material properties resulting from damage in metals.
对金属“损害”的概念仍然难以量化。金属是我们最重要的结构材料之一,为从建筑物到桥梁,再到核反应堆的一切提供了支柱。如果我们有一种通用的方法来测量损坏,我们将能够更好地预测金属何时会失效,测量它们在使用过程中的退化,并设计出更持久、更经济的新金属。储能指纹的使用被提出作为一种量化任何破坏过程对金属的损伤的方法。我们专注于辐射损伤作为一种理想的方法,使所有类型的缺陷在金属中发现。一个双管齐下的实验和模拟方法将被用来量化和理解这些存储的能量指纹,将它们直接与损坏造成的缺陷。这项工作的直接应用范围从调和离子辐照和中子辐照之间的差异,到预测辐射损伤引起的材料性质变化,再到核查铀浓缩离心机的历史使用情况。这一认识的提高也将是降低其研究障碍的关键,为实践教学和纳入更多代表性不足的少数民族(URM)创造全新的机会技术我们了解材料如何对损伤作出反应的能力受到限制,因为我们缺乏对所产生的微观结构缺陷的精确数量的了解。在损坏过程中。在辐射材料科学领域,这一问题最为普遍,因为缺乏可测量的辐射损伤单位,继续使电离辐射下材料性能退化的定量机制变得模糊不清。如果损伤材料中每一个缺陷的全部数量都是已知的,那么它的材料性能就可以用现有的结构-性能关系来预测。我们建议使用存储的能量指纹可视化的缺陷造成的任何类型的损害,特别是辐射的充分过剩。我们从一个长期被忽视的想法中得到灵感,即辐射损伤应该像非晶化或冷加工一样储存能量。这一想法被扩展到描述金属中所有形式的微观结构损伤,以可测量的方式揭示了负责的缺陷。使用时间加速的并行副本动力学模拟和超快纳米量热测量,我们将直接将模拟和测量的中尺度储存能量释放与原子理解联系起来。这将使受损金属的存储能量指纹的后验测量成为可能,揭示原子结构和缺陷的数量。因此,我们试图提供完整的图片所造成的损伤缺陷,展示了一种方法来测量它们,解释它们的演变使用原子模拟,并创建统一的理论来预测缺陷结构和由此产生的材料性能造成的金属损伤。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Achieving exceptional radiation tolerance with crystalline-amorphous nanocrystalline structures
- DOI:10.1016/j.actamat.2019.12.058
- 发表时间:2020-03
- 期刊:
- 影响因子:9.4
- 作者:Miaomiao Jin;P. Cao;M. Short
- 通讯作者:Miaomiao Jin;P. Cao;M. Short
Potential energy landscape activations governing plastic flows in glass rheology
- DOI:10.1073/pnas.1907317116
- 发表时间:2019-09-17
- 期刊:
- 影响因子:11.1
- 作者:Cao, Penghui;Short, Michael P.;Yip, Sidney
- 通讯作者:Yip, Sidney
Measuring Effects of Radiation on Precipitates in Aluminum 7075-T6 Using Differential Scanning Calorimetry
使用差示扫描量热法测量辐射对铝 7075-T6 中沉淀物的影响
- DOI:10.1115/icone26-82457
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Connick, Rachel C.;Hirst, Charles A.;Cao, Penghui;So, Kangpyo;Kemp, R. Scott;Short, Michael P.
- 通讯作者:Short, Michael P.
Understanding the mechanisms of amorphous creep through molecular simulation
- DOI:10.1073/pnas.1708618114
- 发表时间:2017-12-26
- 期刊:
- 影响因子:11.1
- 作者:Cao, Penghui;Short, Michael P.;Yip, Sidney
- 通讯作者:Yip, Sidney
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Short其他文献
Cost-effective electrification of remote houses and communities with renewable energy sources
利用可再生能源对偏远房屋和社区进行经济高效的电气化
- DOI:
10.1063/5.0178118 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Aneeka Arshad Gill;Chris Ogwumike;Michael Short - 通讯作者:
Michael Short
Breaking barriers to modelling biotechnologies with machine learning
打破利用机器学习为生物技术建模的障碍
- DOI:
10.1016/j.resconrec.2024.108071 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:10.900
- 作者:
Oliver J. Fisher;Michael Short;Dongda Zhang;Miao Guo;Rachel L. Gomes - 通讯作者:
Rachel L. Gomes
An MINLP-based decision-making tool to help microbreweries improve energy efficiency and reduce carbon footprint through retrofits
- DOI:
10.1016/j.dche.2024.100189 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Veit Schagon;Rohit Murali;Ruosi Zhang;Melis Duyar;Michael Short - 通讯作者:
Michael Short
P15-013-23 Changes in Human Metabolism and Post-Prandial Responses Following a 5-Hour Simulated Jet-Lag
- DOI:
10.1016/j.cdnut.2023.100731 - 发表时间:
2023-07-01 - 期刊:
- 影响因子:
- 作者:
Jonathan Johnston;Barbara Fielding;Alan Flanagan;Alexandra Johnstone;Claus-Dieter Mayer;Jeewaka Mendis;Benita Middleton;Peter Morgan;Victoria Revell;Leonie Ruddick-Collins;Michael Short;Johanna von Gerichten - 通讯作者:
Johanna von Gerichten
In Memoriam of Professor Duncan M. Fraser
- DOI:
10.1007/s41660-023-00365-4 - 发表时间:
2023-09-05 - 期刊:
- 影响因子:2.500
- 作者:
Adeniyi J. Isafiade;Michael Short;Dominic C. Y. Foo - 通讯作者:
Dominic C. Y. Foo
Michael Short的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Short', 18)}}的其他基金
Artificial Intelligence Enabling Future Optimal Flexible Biogas Production for Net-Zero
人工智能实现未来最佳灵活沼气生产,实现净零排放
- 批准号:
EP/Y005600/1 - 财政年份:2023
- 资助金额:
$ 64.33万 - 项目类别:
Research Grant
相似海外基金
Collaborative Research: GEM--Quantifying the Contribution of Off-Equatorial Ultra-Low Frequency (ULF) Waves on Radial Diffusion in the Radiation Belts
合作研究:GEM——量化离赤道超低频(ULF)波对辐射带径向扩散的贡献
- 批准号:
2247855 - 财政年份:2023
- 资助金额:
$ 64.33万 - 项目类别:
Standard Grant
Collaborative Research: GEM--Quantifying the Contribution of Off-Equatorial Ultra-Low Frequency (ULF) Waves on Radial Diffusion in the Radiation Belts
合作研究:GEM——量化离赤道超低频(ULF)波对辐射带径向扩散的贡献
- 批准号:
2247856 - 财政年份:2023
- 资助金额:
$ 64.33万 - 项目类别:
Standard Grant
Collaborative Research: GEM--Quantifying the Contribution of Off-Equatorial Ultra-Low Frequency (ULF) Waves on Radial Diffusion in the Radiation Belts
合作研究:GEM——量化离赤道超低频(ULF)波对辐射带径向扩散的贡献
- 批准号:
2247857 - 财政年份:2023
- 资助金额:
$ 64.33万 - 项目类别:
Standard Grant
GEM: Quantifying Radiation Belt Losses and Their Effects on the Atmosphere
GEM:量化辐射带损失及其对大气的影响
- 批准号:
2225613 - 财政年份:2022
- 资助金额:
$ 64.33万 - 项目类别:
Standard Grant
GEM: Quantifying the Role of Radial Diffusion on the Energy-dependent Acceleration of Ultrarelativistic Electrons in the Center of Outer Radiation Belt
GEM:量化径向扩散对外辐射带中心超相对论电子依赖能量的加速的作用
- 批准号:
2140933 - 财政年份:2021
- 资助金额:
$ 64.33万 - 项目类别:
Standard Grant
CAREER: Quantifying Radiation Belt Precipitation and Atmospheric Impacts through D-region Ionosphere Imaging
职业:通过 D 区电离层成像量化辐射带降水和大气影响
- 批准号:
2044846 - 财政年份:2021
- 资助金额:
$ 64.33万 - 项目类别:
Continuing Grant
GEM: From the Micro to the Macro--Identifying the Mechanisms Responsible for Megaelectron-Volt (MeV) Electron Microbursts and Quantifying Their Role in Global Radiation Belt Losses
GEM:从微观到宏观——确定兆电子伏(MeV)电子微爆发的机制并量化其在全球辐射带损失中的作用
- 批准号:
2025706 - 财政年份:2020
- 资助金额:
$ 64.33万 - 项目类别:
Standard Grant
Quantifying Particle Precipitation from the Radiation Belts
量化辐射带的粒子降水
- 批准号:
553301-2020 - 财政年份:2020
- 资助金额:
$ 64.33万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
GEM: Quantifying the Role of Radial Diffusion on the Energy-dependent Acceleration of Ultrarelativistic Electrons in the Center of Outer Radiation Belt
GEM:量化径向扩散对外辐射带中心超相对论电子依赖能量的加速的作用
- 批准号:
1952903 - 财政年份:2020
- 资助金额:
$ 64.33万 - 项目类别:
Standard Grant
Collaborative Research: CEDAR--Quantifying the Impact of Radiation Belt Electron Precipitation on Atmospheric Reactive Nitrogen Oxides (NOx) and Ozone (O3)
合作研究:CEDAR——量化辐射带电子沉淀对大气活性氮氧化物 (NOx) 和臭氧 (O3) 的影响
- 批准号:
1650738 - 财政年份:2018
- 资助金额:
$ 64.33万 - 项目类别:
Standard Grant