CRII: III: RUI: Computational Approaches for Inferring the Evolutionary Histories of Cancer Genomes
CRII:III:RUI:推断癌症基因组进化史的计算方法
基本信息
- 批准号:1657380
- 负责人:
- 金额:$ 14.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-03-01 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cancer results from the accumulation of genomic alterations that occur during the individual's lifetime and cause the uncontrolled growth of a collection of cells into a tumor. These mutations occur as part of an evolutionary process that may have begun decades before a patient?s diagnosis. Better understanding of the history of a tumor's evolution over time may yield important insight into how and why tumors develop, as well as which mutations drive their growth. Recent advances in DNA sequencing technologies have revolutionized how all aspects of the human genome are measured and have the potential to shed light on the molecular underpinnings of cancer and many other human diseases. However, realizing the full potential of these technological advances will require novel algorithmic methods specifically designed to analyze this data. For example, DNA sequencing data only captures information about the tumor at the time of sequencing, rather than how it evolved to its current state. While many algorithms have been developed in recent years to infer information about tumor evolution from DNA sequence data, this area of computational development is relatively young and many unsolved challenges remain. This project will focus on the development of computational approaches that enable improved inference of the evolutionary histories of cancer genomes, while simultaneously expanding undergraduate research participation in the field of computational biology. The evolutionary history of a tumor can be described as a rooted tree whose vertices represent different tumor populations that existed during the history of the tumor. While many computational methods aim to infer this history from sequencing data, there is much room for improvement. For instance, the incorporation of multiple data signals (e.g., single nucleotide variants and copy number aberrations) has proven difficult and different methods may produce different results when run on the same dataset. This project will develop computational approaches that directly address this and other limitations. Rather than proposing the advent of another method to directly infer the evolutionary history of a tumor, this project will develop consensus methods that, given a collection of potential tumor history trees, infer a single consensus tree. Furthermore, this project will investigate both theoretical and practical limitations to inferring the evolutionary history of tumors. This will include analysis of when large-scale events such as whole-genome duplications are theoretically detectable as well as simulation studies to investigate how practical considerations, such as: (i) sequencing coverage, (ii) number and distribution of sequenced samples, and (iii) noise in the sequenced data, limit or alter the ability to infer the evolutionary history of a tumor. This project will be completed with the help of undergraduate student researchers from a wide array of backgrounds, thus broadening student participation in computational biology and computer science. Additionally, the PI will coordinate a cross-institutional undergraduate workshop on computational biology that will provide a venue for both students and faculty at baccalaureate institutions to interact and collaborate.
癌症是由个体一生中发生的基因组改变的积累造成的,并导致一组细胞不受控制地生长成肿瘤。这些突变是进化过程的一部分,这一进化过程可能在患者S确诊前几十年就开始了。更好地了解肿瘤随时间演变的历史可能会对肿瘤如何和为什么发展以及哪些突变驱动它们的生长有重要的洞察力。DNA测序技术的最新进展彻底改变了人类基因组的所有方面的测量方式,并有可能揭示癌症和许多其他人类疾病的分子基础。然而,要实现这些技术进步的全部潜力,将需要专门设计的新算法方法来分析这些数据。例如,DNA测序数据只捕获测序时关于肿瘤的信息,而不是它如何进化到目前的状态。虽然近年来已经开发了许多算法来从DNA序列数据中推断关于肿瘤进化的信息,但这一计算开发领域还相对年轻,仍然存在许多未解决的挑战。该项目将专注于开发能够改进癌症基因组进化史推断的计算方法,同时扩大本科生在计算生物学领域的研究参与。肿瘤的进化史可以被描述为一棵有根的树,其顶点代表了肿瘤历史上存在的不同肿瘤种群。虽然许多计算方法的目标是从测序数据推断这一历史,但仍有很大的改进空间。例如,多个数据信号(例如单核苷酸变体和拷贝数偏差)的结合已被证明是困难的,当在相同的数据集上运行时,不同的方法可能产生不同的结果。该项目将开发直接解决这一限制和其他限制的计算方法。这个项目不是提出另一种方法来直接推断肿瘤的进化史,而是开发共识方法,在给定一组潜在的肿瘤历史树的情况下,推断出单一的共识树。此外,该项目将调查理论和实践的局限性,以推断肿瘤的进化史。这将包括对理论上何时可以检测到大规模事件(如全基因组复制)的分析,以及对实际考虑因素(例如:(I)测序覆盖范围、(Ii)测序样本的数量和分布以及(Iii)测序数据中的噪声)如何限制或改变推断肿瘤进化历史的能力的模拟研究。这个项目将在来自不同背景的本科生研究人员的帮助下完成,从而扩大学生对计算生物学和计算机科学的参与。此外,PI将协调一个关于计算生物学的跨机构本科生研讨会,该研讨会将为学士学位院校的学生和教职员工提供互动和合作的场所。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Examining Tumor Phylogeny Inference in Noisy Sequencing Data
- DOI:10.1109/bibm.2018.8621437
- 发表时间:2018-12
- 期刊:
- 影响因子:0
- 作者:K. Tomlinson;Layla Oesper
- 通讯作者:K. Tomlinson;Layla Oesper
Parameter, noise, and tree topology effects in tumor phylogeny inference
- DOI:10.1186/s12920-019-0626-0
- 发表时间:2019-12
- 期刊:
- 影响因子:2.7
- 作者:K. Tomlinson;Layla Oesper
- 通讯作者:K. Tomlinson;Layla Oesper
Emerging Topics in Cancer Evolution
癌症进化的新兴话题
- DOI:10.1142/9789811250477_0036
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:El-Kebir, Mohammed;Morris, Quaid;Oesper, Layla;Sahinalp, S. Cenk
- 通讯作者:Sahinalp, S. Cenk
GraPhyC: Using Consensus to Infer Tumor Evolution
- DOI:10.1109/tcbb.2020.3029689
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Kiya W. Govek;Camden Sikes;Yangqiaoyu Zhou;Layla Oesper
- 通讯作者:Kiya W. Govek;Camden Sikes;Yangqiaoyu Zhou;Layla Oesper
Distance measures for tumor evolutionary trees
- DOI:10.1093/bioinformatics/btz869
- 发表时间:2020-04-01
- 期刊:
- 影响因子:5.8
- 作者:DiNardo, Zach;Tomlinson, Kiran;Oesper, Layla
- 通讯作者:Oesper, Layla
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Layla Oesper其他文献
Generalized Matching Distance: Tumor Phylogeny Comparison Beyond the Infinite Sites Assumption
广义匹配距离:超越无限位点假设的肿瘤系统发育比较
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Quoc Nguyen;Layla Oesper - 通讯作者:
Layla Oesper
p-Coloring Classes of Torus Knots
环面结的 p-着色类别
- DOI:
10.35834/mjms/1316027244 - 发表时间:
2009 - 期刊:
- 影响因子:0.4
- 作者:
Anna;Layla Oesper;Laura Taalman - 通讯作者:
Laura Taalman
Multi-State Perfect Phylogeny Mixture Deconvolution and Applications to Cancer Sequencing
多状态完美系统发育混合反卷积及其在癌症测序中的应用
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
M. El;Gryte Satas;Layla Oesper;Benjamin J. Raphael - 通讯作者:
Benjamin J. Raphael
Layla Oesper的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Layla Oesper', 18)}}的其他基金
CAREER: Algorithmic Approaches for Phylogenetic Analysis of Tumor Evolution
职业:肿瘤进化系统发育分析的算法方法
- 批准号:
2046011 - 财政年份:2021
- 资助金额:
$ 14.28万 - 项目类别:
Continuing Grant
相似国自然基金
全钒液流电池负极V(II)/V(III)电化学氧化还原的催化机理研究
- 批准号:2025JJ50094
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
吡咯烷生物碱所致肝窦阻塞综合征III区肝损伤的新机制——局部氨代谢紊乱
- 批准号:JCZRYB202500652
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
硅基III-V族亚微米线激光器的光场模式调控与耦合机理研究
- 批准号:JCZRQN202501004
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
MXene/nZVI@FH材料微域层界面调控水中砷(III)氧化迁移机制
- 批准号:2025JJ50319
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
HOXC8/OPN/CD44/EGFR轴介导的奥沙利铂耐药性在III期右半结肠癌耐药进展中的研究
- 批准号:2025JJ50694
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI结合超声原始射频信号评估Bethesda III/IV类甲状腺肿瘤包膜和血管侵犯研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
硫化砷靶向VPS4B-ESCRT-III调控自噬溶酶体通路逆转三阴性乳腺癌顺铂耐药性的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
ASPGR与MRC2双受体介导铱(III)配合物
脂质体抗肝肿瘤研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
Ap-Exo III 联合模式识别构建降尿酸药
物筛选新方法的研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
经关节突截骨矫治III期Kummell病临床有效性分析
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
III: Small: RUI: Designing Structure-Phenotype Query-Retrieval and Analysis Systems for Microscopy-Based Whole Organism Studies
III:小:RUI:为基于显微镜的整个生物体研究设计结构表型查询检索和分析系统
- 批准号:
2401096 - 财政年份:2023
- 资助金额:
$ 14.28万 - 项目类别:
Standard Grant
III: Small: RUI: A Fairness Auditing Framework for Predictive Mobility Models
III:小:RUI:预测移动模型的公平性审核框架
- 批准号:
2304213 - 财政年份:2023
- 资助金额:
$ 14.28万 - 项目类别:
Standard Grant
III: Small: RUI: Finding Best Representative Phylogenetic Tree Reconciliations
III:小:RUI:寻找最佳代表性系统发育树协调
- 批准号:
2231150 - 财政年份:2022
- 资助金额:
$ 14.28万 - 项目类别:
Standard Grant
CRII: III: RUI: Multiphysics Modeling of Slope Stability in Post-Wildfire Environment
CRII:III:RUI:野火后环境中边坡稳定性的多物理场建模
- 批准号:
2153370 - 财政年份:2022
- 资助金额:
$ 14.28万 - 项目类别:
Standard Grant
III: Small: RUI: Investigating Fragmentation Rules and Improving Metabolite Identification Using Graph Grammar and Statistical Methods
III:小:RUI:使用图语法和统计方法研究断裂规则并改进代谢物识别
- 批准号:
2053286 - 财政年份:2020
- 资助金额:
$ 14.28万 - 项目类别:
Standard Grant
III: Small: RUI: Collaborative Research: Modeling Pre- and Post- Conditions for Understanding Events
III:小:RUI:协作研究:为理解事件建模前后条件
- 批准号:
2007128 - 财政年份:2020
- 资助金额:
$ 14.28万 - 项目类别:
Interagency Agreement
EAGER: III: Collaborative Research: RUI: In silico Algorithm for Assessing the Effects of Amino Acid Insertion and Deletion Mutations
EAGER:III:合作研究:RUI:用于评估氨基酸插入和缺失突变影响的计算机算法
- 批准号:
2031283 - 财政年份:2020
- 资助金额:
$ 14.28万 - 项目类别:
Standard Grant
III: Small: RUI: Scalable and Iterative Statistical Testing of Multiple Hypotheses on Massive Datasets
III:小型:RUI:海量数据集上多个假设的可扩展和迭代统计检验
- 批准号:
2006765 - 财政年份:2020
- 资助金额:
$ 14.28万 - 项目类别:
Standard Grant
CRII: III: RUI: Association Testing and Inversion Detection without Reference Genomes
CRII:III:RUI:无参考基因组的关联测试和倒置检测
- 批准号:
1947257 - 财政年份:2020
- 资助金额:
$ 14.28万 - 项目类别:
Standard Grant
CRII: III: RUI: Effective Protein Characterization via Fast Exact Open Modification Searching
CRII:III:RUI:通过快速精确开放修饰搜索进行有效的蛋白质表征
- 批准号:
1850557 - 财政年份:2019
- 资助金额:
$ 14.28万 - 项目类别:
Continuing Grant














{{item.name}}会员




