CRII: CHS: Data-Driven Automation of Color Encodings for Data Visualization

CRII:CHS:用于数据可视化的数据驱动的颜色编码自动化

基本信息

  • 批准号:
    1657599
  • 负责人:
  • 金额:
    $ 17.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2020-02-29
  • 项目状态:
    已结题

项目摘要

Graphs, charts, and other visualizations of data rely on color both to convey key aspects of the underlying data and to attract and engage viewers. Getting both the accuracy and aesthetics of color choices right, however, is hard, and most existing tools for helping designers focus on just one of the two. Developing accurate color mappings is even harder because how colors are perceived changes depending on the size and shape of visual marks, lighting and contrast, and a number of other factors. In this project, the research team will use designs created by existing tools to construct an initial statistical model of color mappings that captures expert designers' current decision-making. They will then improve those models by creating visualizations based on the models, altering size, shape, contrast, and lighting, and testing how well people can use those designs to learn the underlying values of the data. Finally, the team will create a design tool that allows both expert and non-expert designers to create visualizations, choosing anchor colors and aspects of the visualization, and generating color maps that are most accurate and aesthetic based on the models and the designer's choices. The work will lead to more accurate models of perception and mechanisms for choosing color maps that capture both design expertise and perceptual accuracy; this, in turn, will lead to practical improvements in the effectiveness of data visualizations that are increasingly part of people's experience. The team also plans to increase the accessibility of data visualizations by helping designers choose color mappings that are more usable by people with color-blindness, while making the tools themselves more usable by color-blind people. The tools and work will also be integrated into several courses on human-computer interaction and data science at the lead investigator's institution, benefiting students from a variety of research groups and departments.Color ramps will be represented as a set of control points (two end points in sequential encodings and two end points plus a midpoint in diverging ramps) that determine the overall structure of the ramp, and a smooth interpolation path that connecting the control points in colorspace. To capture current expert practice, the team will first extract initial color ramps from colormaps available in existing design-based visualization tools, using the CIELAB colorspace to model the statistical characteristics of the control points and interpolation paths of these encodings, generating aesthetic constraints grounded in the current design consensus. The team will then use crowdsourcing platforms, which have been shown to be effective for a number of perceptual and visualization experiments, to systematically study how specific aspects of visualization design including mark shape, mark size, and visualization type, affect people's ability to detect color differences in colorspace; further, conducting the experiment online means this model will be specifically tailored to the online/web/screen viewing context. This empirical model can enforce perceptual constraints imposed by visualization design choices on the color ramps generated by the aesthetic models by constraining and repositioning control points. Finally, these models will be integrated into a publicly available color authoring system that will be validated through use in courses at the lead researcher's institution and at design workshops with the local community. In addition to developing the specific models and tools around color encodings, the work sets up a broader research agenda of combining automation and interaction, in which semi-automated guidance democratizes effective visualization practice and allows people to leverage prior designs and create new representations without requiring extensive visualization training.
图形、图表和其他数据可视化依赖于颜色来传达底层数据的关键方面,并吸引和吸引观众。 然而,要同时做到颜色选择的准确性和美观性是很困难的,大多数现有的工具都可以帮助设计师专注于两者之一。 开发准确的颜色映射甚至更难,因为颜色的感知方式取决于视觉标记的大小和形状,照明和对比度以及许多其他因素。 在这个项目中,研究团队将使用现有工具创建的设计来构建颜色映射的初始统计模型,以捕获专家设计师的当前决策。 然后,他们将通过基于模型创建可视化,改变大小,形状,对比度和照明,并测试人们如何使用这些设计来学习数据的潜在价值来改进这些模型。 最后,该团队将创建一个设计工具,允许专家和非专家设计师创建可视化,选择可视化的锚颜色和方面,并根据模型和设计师的选择生成最准确和美观的颜色图。 这项工作将导致更准确的感知模型和机制,用于选择同时捕获设计专业知识和感知准确性的彩色地图;这反过来又将导致数据可视化的有效性的实际改进,这些数据可视化越来越成为人们体验的一部分。 该团队还计划通过帮助设计师选择色盲人群更可用的颜色映射来增加数据可视化的可访问性,同时使工具本身更适合色盲人群。 这些工具和工作还将被整合到首席研究员所在机构的几门人机交互和数据科学课程中,使来自各种研究小组和部门的学生受益。颜色斜坡将被表示为一组控制点(顺序编码中的两个端点和发散斜坡中的两个端点加上中点),其确定斜坡的总体结构,以及连接颜色空间中控制点的平滑插值路径。 为了捕捉当前的专家实践,该团队将首先从现有的基于设计的可视化工具中可用的色彩图中提取初始颜色渐变,使用CIELAB色彩空间来建模这些编码的控制点和插值路径的统计特征,生成基于当前设计共识的美学约束。 然后,该团队将使用众包平台,这些平台已被证明对一些感知和可视化实验是有效的,系统地研究可视化设计的具体方面,包括标记形状,标记大小和可视化类型,如何影响人们在色彩空间中检测颜色差异的能力;此外,在线进行实验意味着该模型将专门针对在线/网络/屏幕观看环境。 该经验模型可以通过约束和重新定位控制点来对由美学模型生成的颜色渐变实施由可视化设计选择施加的感知约束。 最后,这些模型将被集成到一个公开的颜色创作系统,将通过使用在课程中的首席研究员的机构和设计研讨会与当地社区进行验证。 除了围绕颜色编码开发特定的模型和工具外,这项工作还建立了一个更广泛的研究议程,将自动化和交互相结合,其中半自动化的指导使有效的可视化实践民主化,并允许人们利用先前的设计并创建新的表示,而无需进行广泛的可视化培训。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Color Crafting: Automating the Construction of Designer Quality Color Ramps
Measuring the Separability of Shape, Size, and Color in Scatterplots
Where's My Data? Evaluating Visualizations with Missing Data
Modeling Color Difference for Visualization Design
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Danielle Szafir其他文献

Danielle Szafir的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Danielle Szafir', 18)}}的其他基金

CAREER: HCC: Developing Perceptually-Driven Tools for Estimating Visualization Effectiveness
职业:HCC:开发用于估计可视化效果的感知驱动工具
  • 批准号:
    2320920
  • 财政年份:
    2022
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Continuing Grant
CAREER: HCC: Developing Perceptually-Driven Tools for Estimating Visualization Effectiveness
职业:HCC:开发用于估计可视化效果的感知驱动工具
  • 批准号:
    2046725
  • 财政年份:
    2021
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于CHS-DRGs和诊疗全流程大数据挖掘的子宫肌瘤手术“主路径+支路径”的复合临床路径模式研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
CHS-DRG模式下ICU老年患者CRE医院感染防控对策研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
威尼斯镰刀菌中几丁质合成关键基因Chs调控菌丝体结构与蛋白消 化特性的机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
PLA/GO/CHS导电分层缓释给药系统治疗长节段周围神经损伤的研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
旁系同源CHS在柑橘黄酮类及花色苷合成通路中差异化调控的分子机制
  • 批准号:
    32302507
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Chs 基因对红曲色素和桔霉素合成代谢的调控作用
  • 批准号:
    2021JJ31146
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
红曲霉关键chs基因调控红曲色素和桔霉素合成的作用机制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
除虫菊CHS合成酶及其互作蛋白协同调控除虫菊酯合成代谢的催化机制解析
  • 批准号:
    31902051
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
先进CHS结构柔性复合负极材料的可控制备及其储能构效关系研究
  • 批准号:
    61574122
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

CRII: CHS: Developing Youth Data Literacies through a Visual Programming Environment
CRII:CHS:通过可视化编程环境培养青少年数据素养
  • 批准号:
    2230291
  • 财政年份:
    2022
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
CRII: CHS: Developing Youth Data Literacies through a Visual Programming Environment
CRII:CHS:通过可视化编程环境培养青少年数据素养
  • 批准号:
    1948113
  • 财政年份:
    2020
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
CRII: CHS: Exploring IoT Data Transparency in the Home through Creative Data Representations
CRII:CHS:通过创意数据表示探索家庭中的物联网数据透明度
  • 批准号:
    1947696
  • 财政年份:
    2020
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
CRII: CHS: Novel Approaches for Real-Time Data Capture in Fast-Paced Medical Work
CRII:CHS:快节奏医疗工作中实时数据采集的新方法
  • 批准号:
    1948292
  • 财政年份:
    2020
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
CRII: CHS: Visualizing Data Relationships Across Multiple Views
CRII:CHS:跨多个视图可视化数据关系
  • 批准号:
    1850036
  • 财政年份:
    2019
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
CRII: CHS: Improving Data Exploration by Mining Analyst Behavior
CRII:CHS:通过挖掘分析师行为改进数据探索
  • 批准号:
    1850195
  • 财政年份:
    2019
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
CRII: CHS: Visualizing Data Relationships Across Multiple Views
CRII:CHS:跨多个视图可视化数据关系
  • 批准号:
    2002082
  • 财政年份:
    2019
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
CRII: CHS: Enhancing Patient-Clinician Communication through Self-Monitoring Data Sharing
CRII:CHS:通过自我监测数据共享加强患者与临床医生的沟通
  • 批准号:
    1753453
  • 财政年份:
    2017
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Continuing Grant
CRII: CHS: Perceptual Data-Guided Computational Design
CRII:CHS:感知数据引导计算设计
  • 批准号:
    1565978
  • 财政年份:
    2016
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Continuing Grant
CRII: CHS: Enhancing Patient-Clinician Communication through Self-Monitoring Data Sharing
CRII:CHS:通过自我监测数据共享加强患者与临床医生的沟通
  • 批准号:
    1464382
  • 财政年份:
    2015
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了