Collaborative Research: Structural and functional architecture shaping neural tuning within the human posterior superior temporal sulcus
合作研究:塑造人类颞上沟内神经调节的结构和功能架构
基本信息
- 批准号:1658278
- 负责人:
- 金额:$ 22.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-01-15 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Humans are social creatures with extensive neural systems dedicated to the skills required to navigate interactions with others. This includes decoding the actions of others to infer goals and intentions, and planning our own actions that are appropriate for the current context. Brain regions that support these skills are anatomically dispersed in the four lobes of the brain, organized as a network with communication via long-range white matter connections. One key hub of this network is the posterior superior temporal sulcus (pSTS). The work is this proposal will address an important outstanding question: how the long-range connections supporting action understanding are organized, and the nature of the information that is integrated through these connections. This work will combine structural and functional brain imaging to identify anatomical pathways connecting systems supporting action recognition, with particular attention to pathways through the pSTS, and will use computational statistical analyses to characterize the neural information that is carried through those pathways. This problem is of urgent scientific and clinical relevance: Neuroscience increasingly recognizes that brain regions do not function in isolation, but instead reflect the integration of neural signaling from many cortical sources. The work in this proposal seeks to advance brain science by explicitly modeling these sources in a targeted cortical network. The action recognition network holds additional importance to the public, as some neurodevelopmental disorders (such as autism) are linked to atypical development of the pSTS and poor communication within this neural network. Therefore the outcomes from this work may be critical for developing new clinical tools for diagnosis and interventions for these disorders. Implementing the work in this grant will also support the full engagement and promotion of under-represented and first-generation of young scientists training in neuroscientific research. The problem of how information is communicated and structured within the action recognition network is an important one. Many competing scientific models exist as to the functional specialization of the posterior superior temporal sulcus and connected brain regions within the action recognition network. New empirical data and analytical techniques are required to advance these theoretical models. A key to understanding information structure within the pSTS and the larger action recognition network is to evaluate the sources integrated within the neural signals, which reflect both sensory-driven perceptual analysis of social cues and the top-down goal-directed signals modulate influences. The work in this proposal will combine innovative experimental design with advanced multivariate statistical analyses to extract structure from the rich regional brain activation response, and will decompose the contribution of sensory-driven and top-down signals on neural tuning. At the same time, one must consider where top-down goal-directed signals originate and the structural pathways by which they are transmitted. The work in this proposal is innovative in that it will characterize the network architecture, both structurally and functionally, using a combination of tools rarely implemented despite their clear complementarity.
人类是社会性生物,拥有广泛的神经系统,致力于与他人互动所需的技能。这包括解码他人的行为,以推断目标和意图,并计划我们自己的行动,适合当前的背景。支持这些技能的大脑区域在解剖学上分散在大脑的四个脑叶中,组织成一个网络,通过长距离白色物质连接进行通信。这个网络的一个关键枢纽是后上级颞沟(pSTS)。这项提案将解决一个重要的悬而未决的问题:如何组织支持行动理解的远程连接,以及通过这些连接整合的信息的性质。这项工作将结合联合收割机的结构和功能的大脑成像,以确定解剖路径连接系统支持动作识别,特别注意通过pSTS的路径,并将使用计算统计分析,以表征通过这些途径进行的神经信息。这个问题具有迫切的科学和临床意义:神经科学越来越认识到,大脑区域并不是孤立地发挥作用,而是反映了来自许多皮层来源的神经信号的整合。该提案中的工作旨在通过在目标皮质网络中明确建模这些来源来推进脑科学。动作识别网络对公众具有额外的重要性,因为一些神经发育障碍(如自闭症)与pSTS的非典型发展和该神经网络内的沟通不良有关。因此,这项工作的结果可能是至关重要的,为这些疾病的诊断和干预开发新的临床工具。实施这项资助的工作还将支持充分参与和促进代表性不足和第一代年轻科学家在神经科学研究方面的培训。如何在动作识别网络中传递和构造信息是一个重要的问题。关于动作识别网络中后上级颞沟和相连的大脑区域的功能特化,存在许多相互竞争的科学模型。需要新的经验数据和分析技术来推进这些理论模型。理解pSTS和更大的动作识别网络中的信息结构的关键是评估神经信号中集成的源,这些源反映了对社会线索的感官驱动的感知分析和自上而下的目标导向信号调制影响。本提案中的工作将联合收割机创新的实验设计与先进的多元统计分析相结合,从丰富的区域大脑激活反应中提取结构,并将分解感官驱动和自上而下的信号对神经调谐的贡献。与此同时,我们必须考虑自上而下的目标导向信号来自何处,以及它们传递的结构性途径。本提案中的工作是创新性的,因为它将从结构和功能两个方面描述网络架构的特点,并使用尽管具有明显互补性但很少实施的工具组合。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Configuration of the action observation network depends on the goals of the observer
- DOI:10.1016/j.neuropsychologia.2023.108704
- 发表时间:2023-11-04
- 期刊:
- 影响因子:2.6
- 作者:Zhou,Xiaojue;Stehr,Daniel A.;Grossman,Emily D.
- 通讯作者:Grossman,Emily D.
Top-Down Attention Guidance Shapes Action Encoding in the pSTS
pSTS 中自上而下的注意力引导塑造动作编码
- DOI:10.1093/cercor/bhab029
- 发表时间:2021
- 期刊:
- 影响因子:3.7
- 作者:Stehr, Daniel A;Zhou, Xiaojue;Tisby, Mariel;Hwu, Patrick T;Pyles, John A;Grossman, Emily D
- 通讯作者:Grossman, Emily D
Optimizing multivariate pattern classification in rapid event-related designs
- DOI:10.1016/j.jneumeth.2023.109808
- 发表时间:2023-02
- 期刊:
- 影响因子:3
- 作者:Daniel A. Stehr;Javier O. Garcia;John A. Pyles;E. Grossman
- 通讯作者:Daniel A. Stehr;Javier O. Garcia;John A. Pyles;E. Grossman
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Pyles其他文献
John Pyles的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
- 批准号:
2341950 - 财政年份:2024
- 资助金额:
$ 22.46万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347322 - 财政年份:2024
- 资助金额:
$ 22.46万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347321 - 财政年份:2024
- 资助金额:
$ 22.46万 - 项目类别:
Standard Grant
Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
- 批准号:
2341951 - 财政年份:2024
- 资助金额:
$ 22.46万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Community And Structural Collapse During Mass Extinctions (CASCaDE)
合作研究:NSFGEO-NERC:大规模灭绝期间的群落和结构崩溃(CASCaDE)
- 批准号:
2334455 - 财政年份:2023
- 资助金额:
$ 22.46万 - 项目类别:
Standard Grant
Collaborative Research: SBP: Increasing Social Equality in STEM through Children's Structural Reasoning
合作研究:SBP:通过儿童的结构推理提高 STEM 中的社会平等
- 批准号:
2317713 - 财政年份:2023
- 资助金额:
$ 22.46万 - 项目类别:
Continuing Grant
Collaborative Research: Science with the People: Collaborative analysis of government data for policy reach and structural change in environmentally contested regions
合作研究:科学与人民:对政府数据进行合作分析,以了解环境争议地区的政策影响力和结构变化
- 批准号:
2318237 - 财政年份:2023
- 资助金额:
$ 22.46万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Community And Structural Collapse During Mass Extinctions (CASCaDE)
合作研究:NSFGEO-NERC:大规模灭绝期间的群落和结构崩溃(CASCaDE)
- 批准号:
2334456 - 财政年份:2023
- 资助金额:
$ 22.46万 - 项目类别:
Standard Grant
Collaborative Research: Research Initiation: Formation of the Foundations for Engineering Intuition in Structural Engineering with Mixed Reality
合作研究:研究启动:混合现实结构工程中工程直觉基础的形成
- 批准号:
2306230 - 财政年份:2023
- 资助金额:
$ 22.46万 - 项目类别:
Standard Grant
Collaborative Research: A New 3-D Velocity and Structural Model of the Northern Basins in the Los Angeles Region for Improved Ground Motion Estimates
合作研究:洛杉矶地区北部盆地的新 3D 速度和结构模型,用于改进地震动估计
- 批准号:
2317154 - 财政年份:2023
- 资助金额:
$ 22.46万 - 项目类别:
Standard Grant