ABI Innovation: Posterior Predictive Checks of Evolutionary Models.
ABI 创新:进化模型的后验预测检查。
基本信息
- 批准号:1661029
- 负责人:
- 金额:$ 40.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-05-15 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With support from the Advances in Biological Informatics in the Division of Biological Infrastructure, Professor Bryan Carstens and his research group at the Ohio State University will further develop the P2M2 software package, so that it can better estimate how multiple events may shape population genetics. Most of the differences among living organisms ultimately can be traced to genetic variation, including humans. Patterns of genetic differences in a species appear across different groups, due to events such as changes in population size, migration between populations, or long periods of isolation. Understanding, for example, how beneficial mutations can be established in a natural population of a certain size that has migration limits is important for understanding aspects of human health, conservation genetics, breeding in agriculture and many other research areas. Recent technological advances have made it fast and inexpensive to obtain genetic sequences from many individuals, assuming samples can be collected. A number of software packages provide models that estimate what prior events looked like from current genetic data, including biological parameters such as population size or migration rate. However, each assumes a particular mathematic model of population demography and are limited to estimating parameters from a subset of the biological processes that may influence genetic variation. A poor match between the assumptions of the analytical model and the true population history will produce inaccurate parameter estimates that are likely to mislead the biological inference. This project will develop software that enables biologists to assess how appropriate a particular software package is to a given set of genetic data. Therefore, it will benefit society by improving the quality of biological inferences drawn from genetic data, ranging from efforts to protect endangered species to investigations into the history of viral pathogens.Bayesian inference is commonly used to analyze genetic data because it provides a computationally efficient approach to identifying highly-probable regions of parameter space, but all such inference is conditional on the models chosen to use in the analysis. While analytical models exist that can estimate parameters associated with all population-level biological processes, such as genetic drift, phylogenetic divergence, gene flow, population size change, etc., computational limitations prevent any given analytical model of incorporating more than a handful of these processes. Biologists typically choose which analytical method to use intuitively, and generally lack approaches for assessing the absolute statistical fit of a model given the genetic data. Consequently, the inferences that result from the analysis of genetic data are effectively conditional on the appropriateness of the model used to analyze the data, although they are rarely presented in such terms. The proposed work will develop and implement a considerable expansion of the P2C2M R package, which currently implements posterior predictive simulation to assess the statistical fit of a single model - the multispecies coalescent model. The work will expand P2C2M such that the statistical fit of additional coalescent methods can be evaluated. By expanding P2C2M, the work promotes the consideration of model fit as an important step within the overall process of making biological inferences from genetic data. Biologists have devoted a great deal of energy to justify the models that they use to analyze their data using verbal reasoning and qualitative arguments, but have generally lacked the tools and statistical framework to do so in a direct quantitative manner. P2C2M will provide these tools by the time of project completion. As a direct consequence of the expanded P2C2M R package, the inferences made by evolutionary geneticists will be more insightful and because researchers and their audiences will have enhanced confidence in the choice of analytical models from which these inferences are derived. The work will enhance biological inferences with important societal benefit, such as the identification of cryptic species, understanding the demography of invasive species and disease vectors, and the movement of alleles across the landscape in endangered species. Updated project code will be available at https://cran.r-project.org/web/packages/P2C2M/index.html and other supplemental information distributed at https://carstenslab.osu.edu/.
在生物基础设施部生物信息学进展的支持下,俄亥俄州州立大学的Bryan Carstens教授和他的研究小组将进一步开发P2 M2软件包,以便更好地估计多个事件如何塑造群体遗传学。生物体之间的大多数差异最终可以追溯到遗传变异,包括人类。一个物种的遗传差异模式出现在不同的群体中,这是由于种群规模的变化、种群之间的迁移或长期隔离等事件造成的。例如,了解如何在具有迁移限制的一定规模的自然种群中建立有益的突变,对于了解人类健康,保护遗传学,农业育种和许多其他研究领域的各个方面非常重要。 最近的技术进步使得从许多个体获得基因序列变得快速和廉价,假设可以收集样本。许多软件包提供了模型,可以从当前的遗传数据中估计出先前事件的样子,包括种群规模或迁移率等生物参数。然而,每一个假设一个特定的数学模型的人口统计学,并限于估计参数的一个子集的生物过程,可能会影响遗传变异。分析模型的假设与真实种群历史之间的不匹配将产生不准确的参数估计,这可能会误导生物学推断。该项目将开发软件,使生物学家能够评估特定软件包对给定的一组遗传数据的适用程度。因此,从保护濒危物种到调查病毒病原体的历史,通过提高从遗传数据得出的生物学推断的质量,它将造福于社会。贝叶斯推断通常用于分析遗传数据,因为它提供了一种计算效率高的方法来识别参数空间的高概率区域,但所有这些推断都取决于分析中选择使用的模型。虽然存在可以估计与所有种群水平生物过程相关的参数的分析模型,例如遗传漂变、系统发育趋异、基因流动、种群规模变化等,计算的局限性阻止了任何给定的分析模型结合这些过程中的一小部分。生物学家通常选择使用哪种分析方法来直观地使用,并且通常缺乏评估给定遗传数据的模型的绝对统计拟合的方法。因此,从遗传数据分析中得出的推论实际上取决于用于分析数据的模型的适当性,尽管它们很少以这种方式提出。拟议的工作将开发和实施P2 C2M R包的相当大的扩展,该包目前实现了后验预测模拟,以评估单个模型的统计拟合-多物种聚结模型。这项工作将扩展P2 C2M,以便可以评估其他聚结方法的统计拟合。通过扩展P2 C2M,这项工作促进了对模型拟合的考虑,将其作为从遗传数据进行生物学推断的整个过程中的重要步骤。生物学家投入了大量的精力来证明他们使用语言推理和定性论证来分析数据的模型,但通常缺乏直接定量的工具和统计框架。P2 C2M将在项目完成时提供这些工具。作为扩展的P2 C2M R包的直接结果,进化遗传学家所做的推断将更有见地,因为研究人员和他们的观众将增强对这些推断所来源的分析模型的选择的信心。这项工作将增强具有重要社会效益的生物学推断,例如识别神秘物种,了解入侵物种和疾病媒介的人口统计学,以及濒危物种中等位基因在景观中的运动。更新的项目代码将在https://cran.r-project.org/web/packages/P2C2M/index.html上提供,其他补充信息将在https://carstenslab.osu.edu/上分发。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Identifying model violations under the multispecies coalescent model using P2C2M.SNAPP
- DOI:10.7717/peerj.8271
- 发表时间:2020-01-10
- 期刊:
- 影响因子:2.7
- 作者:Duckett, Drew J.;Pelletier, Tara A.;Carstens, Bryan C.
- 通讯作者:Carstens, Bryan C.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bryan Carstens其他文献
Bryan Carstens的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bryan Carstens', 18)}}的其他基金
ICBR Capacity: Biological Collections: Infrastructure improvement and data preservation of the Tetrapods Collection at the Ohio State University Museum of Biological Diversity.
ICBR 能力:生物收藏:俄亥俄州立大学生物多样性博物馆四足动物收藏的基础设施改善和数据保存。
- 批准号:
2312986 - 财政年份:2023
- 资助金额:
$ 40.36万 - 项目类别:
Continuing Grant
SG: Leveraging massive song databases and deep learning to examine the mechanisms causing diversification of bird vocalizations.
SG:利用海量歌曲数据库和深度学习来研究导致鸟类发声多样化的机制。
- 批准号:
2016189 - 财政年份:2020
- 资助金额:
$ 40.36万 - 项目类别:
Standard Grant
Collaborative Research:Aggregating and Repurposing Phylogeographic Data.
合作研究:系统发育地理学数据的汇总和重新利用。
- 批准号:
1910623 - 财政年份:2019
- 资助金额:
$ 40.36万 - 项目类别:
Standard Grant
Dimensions US-BIOTA-Sao Paulo: Traits as predictors of adaptive diversification along the Brazilian Dry Diagonal.
维度 US-BIOTA-Sao Paulo:作为巴西干对角线沿线适应性多样化预测因子的特征。
- 批准号:
1831319 - 财政年份:2018
- 资助金额:
$ 40.36万 - 项目类别:
Standard Grant
DISSERTATION RESEACH: Does phenotypic evidence support ecological speciation in western long-eared Myotis bats?
论文研究:表型证据是否支持西部长耳鼠耳蝠的生态物种形成?
- 批准号:
1701810 - 财政年份:2017
- 资助金额:
$ 40.36万 - 项目类别:
Standard Grant
Collaborative Research: A Comparative Phylogeographic Approach to Predicting Cryptic Diversity - The Inland Temperate Rainforest as a Model System
合作研究:预测隐秘多样性的比较系统发育地理学方法 - 内陆温带雨林作为模型系统
- 批准号:
1457519 - 财政年份:2015
- 资助金额:
$ 40.36万 - 项目类别:
Continuing Grant
DISSERTATION RESEARCH: Inferring the Evolutionary History of Arthropods Associated with Pitcher Plants using Phylogeographic Concordance Factors.
论文研究:利用系统发育地理学一致性因子推断与猪笼草相关的节肢动物的进化史。
- 批准号:
1501474 - 财政年份:2015
- 资助金额:
$ 40.36万 - 项目类别:
Standard Grant
DISSERTATION RESEARCH: Spatial sorting and Postglacial population dynamics in Plethodon dunni and P. vehiculum.
论文研究:Plethodon dunni 和 P. vehiculum 的空间分类和冰期后种群动态。
- 批准号:
1403034 - 财政年份:2014
- 资助金额:
$ 40.36万 - 项目类别:
Standard Grant
Collaborative Research: Phylogeographic Inference Using Approximated Likelihoods
合作研究:使用近似似然进行系统地理学推断
- 批准号:
1257784 - 财政年份:2013
- 资助金额:
$ 40.36万 - 项目类别:
Standard Grant
A novel approach to the identification of independent evolutionary lineages
识别独立进化谱系的新方法
- 批准号:
0918212 - 财政年份:2009
- 资助金额:
$ 40.36万 - 项目类别:
Standard Grant
相似海外基金
NSF Engines Development Award: Building an sustainable plastics innovation ecosystem in the Midwest (MN, IL)
NSF 引擎发展奖:在中西部(明尼苏达州、伊利诺伊州)建立可持续塑料创新生态系统
- 批准号:
2315247 - 财政年份:2024
- 资助金额:
$ 40.36万 - 项目类别:
Cooperative Agreement
EAGER: Innovation in Society Study Group
EAGER:社会创新研究小组
- 批准号:
2348836 - 财政年份:2024
- 资助金额:
$ 40.36万 - 项目类别:
Standard Grant
Footwear Innovation to Improve Safety for Female Turf Sport Players (“FemFITS”)
鞋类创新可提高女性草地运动运动员的安全性 (“FemFITS”)
- 批准号:
10098494 - 财政年份:2024
- 资助金额:
$ 40.36万 - 项目类别:
Collaborative R&D
Yorkshire and the Humber Policy Innovation Partnership
约克郡和汉伯政策创新伙伴关系
- 批准号:
ES/Z50239X/1 - 财政年份:2024
- 资助金额:
$ 40.36万 - 项目类别:
Research Grant
RII Track-4:NSF: Automated Design and Innovation of Chemical Production Processes with Intelligent Computing
RII Track-4:NSF:利用智能计算进行化学品生产过程的自动化设计和创新
- 批准号:
2327303 - 财政年份:2024
- 资助金额:
$ 40.36万 - 项目类别:
Standard Grant
Industrial Biotechnology Innovation Cluster
产业生物技术创新集群
- 批准号:
EP/Y024168/1 - 财政年份:2024
- 资助金额:
$ 40.36万 - 项目类别:
Research Grant
AI for Productive Research & Innovation in eLectronics (APRIL) Hub
人工智能促进高效研究
- 批准号:
EP/Y029763/1 - 财政年份:2024
- 资助金额:
$ 40.36万 - 项目类别:
Research Grant
ART: Research to Solutions, Building Translational Capacity in the Central Florida Innovation Ecosystem
ART:从研究到解决方案,在佛罗里达州中部创新生态系统中建设转化能力
- 批准号:
2331319 - 财政年份:2024
- 资助金额:
$ 40.36万 - 项目类别:
Cooperative Agreement
How the mushroom lost its gills: phylogenomics and population genetics of a morphological innovation in the fungal genus Lentinus
蘑菇如何失去鳃:香菇属真菌形态创新的系统基因组学和群体遗传学
- 批准号:
2333266 - 财政年份:2024
- 资助金额:
$ 40.36万 - 项目类别:
Standard Grant