Regulated sialylation modulates cardiac excitability and conduction
调节唾液酸化调节心脏兴奋性和传导
基本信息
- 批准号:1660928
- 负责人:
- 金额:$ 35.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-10-01 至 2019-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Electrical signaling occurs in all cells and is of primary importance to excitable cell function. Neurons, skeletal and cardiac muscle communicate through production and conduction of electrical signals called action potentials (AP), a transient depolarization of the membrane produced by the concerted and highly regulated activities of many voltage-gated ion channels. Slight alterations in ion channel activity often lead to altered excitability. Some of the ion channel functions depend on sugar groups, called glycans, that may comprise ~15-30% of the mature ion channel mass. Most studies showed that sugar-dependent gating effects were imposed primarily by the terminal residue, sialic acid. However, little is known about whether and how regulated sialylation modulates excitability and conduction, in vivo. Thus, questioning whether and how (mechanistically) regulated sialylation modulates cardiac excitability and conduction will be investigated. A broad range of methods including molecular, cellular, tissue, whole animal, and computational techniques will be used at several organizational levels on an animal model comprised of 1) Sialyltransferase (ST) knockout strains producing proteins with fewer attached sialic acids, and 2) The enzymatic removal of sialic acids and N-glycans. The proposed studies are designed to test the viability of a novel mechanism by which glycans modulate electrical signaling, in vivo and in silico. The paradigm challenges being studied throughout this work and the melding of disparate biological areas including ion channel and glyco-biology, have broad implications. Because ion channel activity is involved in the function of all cells of the body, and since nearly all ion channels are glycosylated, gaining an understanding of a functional role for glycosylation in electrical signaling will likely have broad scientific impact. If the studies indicate that glycan structures influence ion channel function, then future studies should address the impact of glycans on ion channel structure as it relates to channel function. In addition to these broad scientific implications, the proposed studies will have broader impact that includes education, communication, and health. To address these broader issues, undergraduate, graduate, and medical students, particularly including minority students, will be trained in the scientific method by asking a fundamental question utilizing a variety of techniques. The generated scientific findings will be shared with the general scientific community, the lay public, and our collaborators, and effectively communicate the impact of these findings on the health of society.
电信号发生在所有细胞中,对可兴奋的细胞功能至关重要。神经元、骨骼肌和心肌通过产生和传导称为动作电位(AP)的电信号进行通信,动作电位是由许多电压门控离子通道的协调和高度调节的活动产生的膜的瞬时去极化。离子通道活性的轻微变化往往会导致兴奋性的改变。一些离子通道的功能依赖于糖基,称为葡聚糖,它可能占成熟离子通道质量的15%-30%。大多数研究表明,糖依赖的门控效应主要是由末端残基唾液酸施加的。然而,在体内,人们对唾液酸化是否以及如何调节兴奋性和传导知之甚少。因此,关于(机械地)调节唾液酸化是否以及如何调节心脏兴奋性和传导的问题将被调查。包括分子、细胞、组织、整个动物和计算技术在内的广泛的方法将在几个组织水平上用于动物模型,该动物模型包括1)唾液酸转移酶(ST)基因敲除菌株产生较少附着唾液酸的蛋白质,以及2)酶法去除唾液酸和N-糖链。这项拟议的研究旨在测试一种新的机制的可行性,通过这种机制,在体内和在硅胶中,多糖可以调节电信号。贯穿这项工作的范式挑战以及包括离子通道和糖生物学在内的不同生物学领域的融合具有广泛的影响。由于离子通道的活动涉及到人体所有细胞的功能,而且几乎所有的离子通道都是糖基化的,了解糖基化在电信号中的功能作用可能会有广泛的科学影响。如果研究表明多糖结构影响离子通道功能,那么未来的研究应该解决与离子通道功能相关的多糖对离子通道结构的影响。除了这些广泛的科学影响外,拟议的研究还将产生更广泛的影响,包括教育、交流和健康。为了解决这些更广泛的问题,本科生、研究生和医学生,特别是包括少数民族学生在内,将通过利用各种技术提出基本问题来接受科学方法方面的培训。产生的科学发现将与普通科学界、非专业公众和我们的合作者分享,并有效地传达这些发现对社会健康的影响。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Bennett其他文献
3051 – HEMATOPOIETIC STEM CELLS DEPEND ON AUTOPHAGY TO MAINTAIN PROTEIN HOMEOSTASIS
- DOI:
10.1016/j.exphem.2022.07.107 - 发表时间:
2022-01-01 - 期刊:
- 影响因子:
- 作者:
Bernadette Chua;Connor Lennan;Mary Jean Sunshine;Ashu Chawla;Eric Bennett;Robert Signer - 通讯作者:
Robert Signer
1013 – HEMATOPOIETIC STEM CELLS DEPEND UPON AGGREPHAGY TO MAINTAIN PROTEIN HOMEOSTASIS
- DOI:
10.1016/j.exphem.2022.07.016 - 发表时间:
2022-01-01 - 期刊:
- 影响因子:
- 作者:
Robert Signer;Bernadette Chua;Connor Lennan;Mary Jean Sunshine;Ashu Chawla;Eric Bennett - 通讯作者:
Eric Bennett
The Proteostasis Network Is a Therapeutic Target in Acute Myeloid Leukemia
蛋白质稳态网络是急性髓系白血病的一个治疗靶点
- DOI:
10.1182/blood-2024-204380 - 发表时间:
2024-11-05 - 期刊:
- 影响因子:23.100
- 作者:
Kentson Lam;Yoon Joon Kim;Carlo M. Ong;Andrea Z. Liu;Fanny Jiahua Jiahua Zhou;Bernadette A. Chua;Silvia Vicenzi;Pierce W. Ford;Jie-Hua Zhou;Eric Bennett;Leslie A Crews;Edward D. Ball;Robert Signer - 通讯作者:
Robert Signer
3055 – ENHANCING TRANSLATION FIDELITY EXTENDS HEMATOPOIETIC STEM CELL LONGEVITY
- DOI:
10.1016/j.exphem.2024.104377 - 发表时间:
2024-08-01 - 期刊:
- 影响因子:
- 作者:
Amanda (AJ) Daniels;Xuezhen Ge;Mary Jean Sunshine;Daniela Dreifke;Marilyn Leonard;Yasar Kasu;Eric Bennett;Robert A.J. Signer - 通讯作者:
Robert A.J. Signer
235 Simultaneous myocardial first-pass perfusion and strain imaging with DENSE
- DOI:
10.1186/1532-429x-10-s1-a96 - 发表时间:
2008-10-22 - 期刊:
- 影响因子:
- 作者:
Yuan Le;Kellman Peter;Joni Taylor;Eric Bennett;Katherine Lucas;Christophe Chefd'Hotel;Christine H Lorenz;Han Wen - 通讯作者:
Han Wen
Eric Bennett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Bennett', 18)}}的其他基金
SBIR Phase I: Novel advanced manufacturing technique for artificial blood vessels
SBIR第一期:新型先进人造血管制造技术
- 批准号:
2127127 - 财政年份:2021
- 资助金额:
$ 35.46万 - 项目类别:
Standard Grant
Collaborative Research: Data-driven integration of biological with in-silico experiments to determine mechanistic effects of N-glycosylation on cellular electromechanical functions
合作研究:数据驱动的生物与计算机实验相结合,以确定 N-糖基化对细胞机电功能的机械效应
- 批准号:
1856199 - 财政年份:2019
- 资助金额:
$ 35.46万 - 项目类别:
Standard Grant
Regulated sialylation modulates cardiac excitability and conduction
调节唾液酸化调节心脏兴奋性和传导
- 批准号:
1146882 - 财政年份:2012
- 资助金额:
$ 35.46万 - 项目类别:
Continuing Grant
Sodium Channel Differential Sialylation Throughout Development
整个发育过程中钠通道差异唾液酸化
- 批准号:
9816685 - 财政年份:1999
- 资助金额:
$ 35.46万 - 项目类别:
Continuing Grant
相似海外基金
Engineering mono-fucosylated IgGs to fine-tune antibody-mediated effector functions
工程化单岩藻糖基化 IgG 来微调抗体介导的效应功能
- 批准号:
10647938 - 财政年份:2023
- 资助金额:
$ 35.46万 - 项目类别:
Sialoglycoproteomic network and target discovery for Alzheimer's disease
唾液酸糖蛋白质组网络和阿尔茨海默病的靶标发现
- 批准号:
10734612 - 财政年份:2023
- 资助金额:
$ 35.46万 - 项目类别:
Chemical Tools to Target TREM2 in Alzheimer's Disease
靶向 TREM2 治疗阿尔茨海默病的化学工具
- 批准号:
10869791 - 财政年份:2023
- 资助金额:
$ 35.46万 - 项目类别:
Removing sialic acid ligands of CD28 to enhance T cell cancer immunotherapy
去除CD28的唾液酸配体以增强T细胞癌症免疫治疗
- 批准号:
10668007 - 财政年份:2023
- 资助金额:
$ 35.46万 - 项目类别:
Developing glycosylated RNAs as novel clinical targets for aggressive prostate cancer.
开发糖基化 RNA 作为侵袭性前列腺癌的新临床靶点。
- 批准号:
10651206 - 财政年份:2023
- 资助金额:
$ 35.46万 - 项目类别:
Siglecs in the Porcine Oviduct: Roles in the Sperm Reservoir and Sperm Immune Response
猪输卵管中的 Siglecs:在精子库和精子免疫反应中的作用
- 批准号:
10607761 - 财政年份:2023
- 资助金额:
$ 35.46万 - 项目类别:
Development of nanobody immunotherapeutics that prevent and treat gonorrhea
开发预防和治疗淋病的纳米抗体免疫疗法
- 批准号:
10753164 - 财政年份:2023
- 资助金额:
$ 35.46万 - 项目类别:
Process development for manufacturing eCD4-Ig
eCD4-Ig 制造工艺开发
- 批准号:
10603836 - 财政年份:2023
- 资助金额:
$ 35.46万 - 项目类别: