Collaborative Research: Mechanisms of Visuospatial Thinking in STEM

合作研究:STEM 中视觉空间思维的机制

基本信息

  • 批准号:
    1661096
  • 负责人:
  • 金额:
    $ 49.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-04-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

A team of researchers from Northwestern University, the University of Illinois at Chicago, and the University of California - Santa Barbara will investigate spatial thinking in STEM fields. Students and scientists who are talented in STEM fields also tend to a high capacity for spatial imagination -- they score highly on tasks that ask them to imagine rotations of shapes, or predict how shapes will look when they are folded. But attempts to train these abilities have not translated to substantial improvement in STEM talents. This may be because current training focuses on rote practice, assuming that it is possible to improve the capacity of someone's spatial imagination. In contrast, this may be not possible -- even STEM experts may not have a substantially higher raw capacity for spatial imagination, compared to the average person. The research will test the exciting possibility that their available imagination 'machinery' is similar, but that experts have learned a set of strategies for using that same capacity far more efficiently. The studies will focus on the domain of chemistry, and will ask novices and experts to remember and transform objects that are both unfamiliar (abstract shapes) and familiar (molecules), in experiments designed to unpack the contributions of raw capacity versus a set of predicted strategies. If the studies can isolate the strategies that these STEM experts use to move beyond their capacity limits, then those strategies could be taught in chemistry classrooms. The same principles could extend to other domains as well, such as physics, geoscience, and algebra. This discovery would substantially enhance science and engineering education programs at all levels, strengthening the scientific and engineering research potential of our students. The project is funded by the EHR Core Research (ECR) program, which supports work that advances the fundamental research literature on STEM learning. Success in STEM is correlated with spatial thinking ability, yet attempts to train spatial ability (e.g., with mental rotation or paper folding tasks) have led to little improvement in STEM outcomes. These spatial training programs may be ineffective because they are based on an impoverished model of the cognitive and visuospatial capacities processes underlying spatial thinking, both generally and in discipline-based education research. The present research will unpack spatial ability into three hypothesized mechanisms, to isolate where training might be best focused, using a set of controlled laboratory tasks that ask novices (undergraduates) and experts to encode and transform both unfamiliar/abstract and molecular stimuli. With chemistry as a case study, this project will unravel the relative contribution of three potential mechanisms for visuospatial representation and transformation: domain-specific chunking (using long-term memory representations of frequently-encountered chunks), domain-general compression skills (recognizing and leveraging redundancies such as repeated identities or planes of symmetry), and raw visuospatial capacity (the ability to store and transform any abstract set of points or shapes). A deeper understanding of the mechanisms involved in spatial thinking would lead directly to better pedagogy and curriculum design for teaching spatial thinking in kindergarten through undergraduate STEM classrooms.
来自西北大学、伊利诺伊大学芝加哥分校和加州大学圣巴巴拉分校的一组研究人员将研究STEM领域的空间思维。在STEM领域有天赋的学生和科学家也往往具有很高的空间想象能力——他们在要求他们想象形状的旋转或预测形状折叠时的样子的任务中得分很高。但是,培养这些能力的尝试并没有转化为STEM人才的实质性提高。这可能是因为目前的训练侧重于死记硬背的练习,假设有可能提高一个人的空间想象能力。相比之下,这可能是不可能的——即使是STEM专家也可能没有比普通人高得多的空间想象能力。这项研究将测试一种令人兴奋的可能性,即他们可用的想象力“机器”是相似的,但专家们已经学会了一套策略,可以更有效地利用同样的能力。这些研究将集中在化学领域,并将要求新手和专家在实验中记住和转换不熟悉(抽象形状)和熟悉(分子)的物体,以揭示原始能力与一组预测策略的贡献。如果这些研究能够分离出这些STEM专家用来超越其能力极限的策略,那么这些策略就可以在化学课堂上教授。同样的原理也可以扩展到其他领域,比如物理、地球科学和代数。这一发现将大大提高各级科学和工程教育计划,加强我们学生的科学和工程研究潜力。该项目由EHR核心研究(ECR)项目资助,该项目支持推进STEM学习基础研究文献的工作。STEM的成功与空间思维能力相关,然而,试图训练空间能力(例如,心理旋转或折纸任务)并没有导致STEM结果的改善。这些空间训练计划可能是无效的,因为它们是基于认知和视觉空间能力过程的一个贫乏模型,这是空间思维的基础,无论是在一般情况下还是在基于学科的教育研究中。本研究将空间能力分解为三种假设机制,利用一组受控的实验室任务,要求新手(本科生)和专家对不熟悉/抽象和分子刺激进行编码和转换,以隔离训练的最佳重点。以化学为例,该项目将揭示三种潜在的视觉空间表示和转换机制的相对贡献:特定领域的分块(使用经常遇到的块的长期记忆表示),领域通用压缩技能(识别和利用冗余,如重复身份或对称平面),以及原始视觉空间容量(存储和转换任何抽象点或形状集合的能力)。更深入地了解空间思维的机制将直接导致通过本科STEM课堂更好地教授幼儿园空间思维的教学法和课程设计。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Visual ZIP files: Viewers beat capacity limits by compressing redundant features across objects.
可视化 ZIP 文件:查看器通过压缩对象之间的冗余功能来突破容量限制。
Visual chunking as a strategy for spatial thinking in STEM
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mike Stieff其他文献

Situating space: using a discipline-focused lens to examine spatial thinking skills
How Much Can Spatial Training Improve STEM Achievement?
  • DOI:
    10.1007/s10648-015-9304-8
  • 发表时间:
    2015-04-11
  • 期刊:
  • 影响因子:
    8.800
  • 作者:
    Mike Stieff;David Uttal
  • 通讯作者:
    David Uttal
Capturing group dynamic faultlines with Yule’s Q
使用 Yule’s Q 捕捉群体动态断层线
Connected Chemistry—Incorporating Interactive Simulations into the Chemistry Classroom

Mike Stieff的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mike Stieff', 18)}}的其他基金

Institutional Transformation through Large-Scale Implementation of Departmental Action Teams
通过大规模实施部门行动小组进行机构转型
  • 批准号:
    2122652
  • 财政年份:
    2021
  • 资助金额:
    $ 49.68万
  • 项目类别:
    Continuing Grant
Enriching the General Chemistry Laboratory Experience with Pedagogical Simulations
通过教学模拟丰富普通化学实验室经验
  • 批准号:
    1244489
  • 财政年份:
    2013
  • 资助金额:
    $ 49.68万
  • 项目类别:
    Standard Grant
Emerging Research - Empirical Research - Representation Translation with Concrete and Virtual Models in Chemistry
新兴研究 - 实证研究 - 化学中具体和虚拟模型的表征翻译
  • 批准号:
    1102349
  • 财政年份:
    2010
  • 资助金额:
    $ 49.68万
  • 项目类别:
    Continuing Grant
Emerging Research - Empirical Research - Representation Translation with Concrete and Virtual Models in Chemistry
新兴研究 - 实证研究 - 化学中具体和虚拟模型的表征翻译
  • 批准号:
    1008505
  • 财政年份:
    2010
  • 资助金额:
    $ 49.68万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319097
  • 财政年份:
    2024
  • 资助金额:
    $ 49.68万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 49.68万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanisms of community coalescence in synthetic microbiomes
合作研究:合成微生物组中群落合并的机制
  • 批准号:
    2328529
  • 财政年份:
    2024
  • 资助金额:
    $ 49.68万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanisms of community coalescence in synthetic microbiomes
合作研究:合成微生物组中群落合并的机制
  • 批准号:
    2328528
  • 财政年份:
    2024
  • 资助金额:
    $ 49.68万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
  • 批准号:
    2344765
  • 财政年份:
    2024
  • 资助金额:
    $ 49.68万
  • 项目类别:
    Standard Grant
Collaborative Research: Determining the role of uranium(V) in the global uranium cycle by characterizing burial mechanisms in marine sinks
合作研究:通过表征海洋汇埋藏机制确定铀(V)在全球铀循环中的作用
  • 批准号:
    2322205
  • 财政年份:
    2024
  • 资助金额:
    $ 49.68万
  • 项目类别:
    Standard Grant
Collaborative Research: Referential alarm calling as a window into the mechanisms and evolution of a complex cognitive phenotype
合作研究:参考警报呼叫作为了解复杂认知表型的机制和演化的窗口
  • 批准号:
    2417581
  • 财政年份:
    2024
  • 资助金额:
    $ 49.68万
  • 项目类别:
    Continuing Grant
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
  • 批准号:
    2309022
  • 财政年份:
    2024
  • 资助金额:
    $ 49.68万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
  • 批准号:
    2344766
  • 财政年份:
    2024
  • 资助金额:
    $ 49.68万
  • 项目类别:
    Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319096
  • 财政年份:
    2024
  • 资助金额:
    $ 49.68万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了