Collaborative Research: ABI Innovation: A Graph Based Approach for the Genome Wide Prediction of Conditionally Essential Genes

合作研究:ABI Innovation:基于图形的条件必需基因全基因组预测方法

基本信息

  • 批准号:
    1661380
  • 负责人:
  • 金额:
    $ 63.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-15 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

How does one identify, and characterize at the genome scale, the set of genes that is essential for an organism to grow and thrive under particular conditions? Predicting such sets of genes is a fundamental goal in bioinformatics; this project aims to create methods and tools for making accurate lists of such functional genes. The approach combines phenotype prediction with knowledge about the functional biological networks in cells to infer new knowledge. The network analysis methods developed here can be easily transferred and applied to a large variety of datasets to answer a wide range of questions from inferring gene-phenotype associations to detecting communities on social networks, extensions highly relevant to the network science community. Moreover, the project's state-of-the-art analysis of temporal gene expression data using state-space models and dimensionality reduction techniques is universally applicable to any groups of genes - e.g. tissue specific vs universally expressed genes. In addition to advancing functional genomics knowledge in the study organism, yeast, the tools will have an impact on research in fields like personal genomics research, by providing a large-scale system-level identification and molecular characterization of phenotypes. Finally, this project provides new and innovative tools for education in bioinformatics. In more technical terms, this project's major goal is to develop new mathematical models and methods that, given a set of genes or an entire genome, can infer their phenotypes and suggest whether or not these genes are necessary for the organism survival. Specifically, information will be integrated on two levels: phenotypic and molecular. At the phenotypic level the structure of biological networks will be used to assign phenotypic attributes to genes and identify sets of genes that share similar essential phenotypes. At the molecular level, the resulted phenotype predictions will be refined by identifying groups of essential genes governed by similar activity patterns. The integration of the information on these two levels will result in a comprehensive gene-phenotype characterization and a refined group of conditionally essential genes. The resulting predictions will be validated experimentally in two yeast systems. All the tools and datasets associated with this project will be made freely available through genopheno.gersteinlab.org.
人们如何在基因组水平上识别和描述在特定条件下对有机体生长和繁荣至关重要的一组基因?预测这样的基因集合是生物信息学的一个基本目标;这个项目的目的是创造方法和工具来制作准确的功能基因列表。该方法将表型预测与细胞内功能生物网络的知识相结合,以推断新的知识。这里开发的网络分析方法可以很容易地转移并应用于大量的数据集,以回答从推断基因-表型关联到检测社会网络上的社区的广泛问题,这是与网络科学社区高度相关的扩展。此外,该项目使用状态空间模型和降维技术对时间基因表达数据进行的最先进的分析普遍适用于任何一组基因--例如组织特异性基因与普遍表达的基因。除了推进研究有机体酵母的功能基因组学知识外,这些工具还将通过提供大规模的系统级鉴定和表型的分子表征,对个人基因组学研究等领域的研究产生影响。最后,该项目为生物信息学教育提供了新的创新工具。用更专业的术语来说,这个项目的主要目标是开发新的数学模型和方法,在给定一组基因或整个基因组的情况下,可以推断它们的表型,并表明这些基因是否对生物体的生存是必要的。具体地说,信息将在两个层面上整合:表型和分子。在表型水平上,生物网络的结构将被用来为基因分配表型属性,并识别具有相似基本表型的基因集。在分子水平上,由此产生的表型预测将通过识别由相似活动模式控制的必要基因组来改进。这两个层次上的信息的整合将导致全面的基因-表型特征和一组精致的条件必需基因。由此产生的预测将在两个酵母系统中进行实验验证。与该项目相关的所有工具和数据集将通过genopheno.gersteinlab.org免费提供。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Haiyuan Yu其他文献

Capped nascent RNA sequencing reveals novel therapy-responsive enhancers in prostate cancer
加帽新生RNA测序揭示了前列腺癌中新型治疗反应增强子
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Cotter;Sagar R. Shah;Mauricio I. Paramo;S. Lou;Li Yao;Philip D. Rubin;You Chen;M. Gerstein;M. Rubin;Haiyuan Yu
  • 通讯作者:
    Haiyuan Yu
Handcuffing intrinsically disordered regions in Mlh1–Pms1 disrupts mismatch repair
束缚 Mlh1–Pms1 中本质上无序的区域会破坏错配修复
  • DOI:
    10.1101/2021.03.02.433678
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    C. Furman;Ting;Qiuye Zhao;K. Yugandhar;Haiyuan Yu;E. Alani
  • 通讯作者:
    E. Alani
Some Error Estimates on the Large Jump Asymptotic Method for Parabolic Iterface Problems
抛物面问题大跳跃渐近法的一些误差估计
  • DOI:
    10.4028/www.scientific.net/amm.121-126.4726
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cunyun Nie;Haiyuan Yu
  • 通讯作者:
    Haiyuan Yu
A monotone finite volume element scheme for diffusion equations on triangular gridsspan class="inline-figure"img src="//ars.els-cdn.com/content/image/1-s2.0-S0898122121004089-fx001.jpg" width="17" height="19" //span
三角形网格上扩散方程的单调有限体积元格式
span style=line-height:150%;font-family:Times New Roman;font-size:12pt;A high order composite scheme for the second order elliptic problem with nonlocal boundary and its fast algorithm/span
非局部边界二阶椭圆问题的高阶复合格式及其快速算法

Haiyuan Yu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Haiyuan Yu', 18)}}的其他基金

EAGER: PLATE-seq: Development and Optimization of a New, Massively Parallel Sequencing Technology to Enable the Construction of a Fully-Sequenced Single-Colony Rice ORFeome
EAGER:PLATE-seq:开发和优化新型大规模并行测序技术,以构建全测序单菌落水稻 ORFeome
  • 批准号:
    1639075
  • 财政年份:
    2016
  • 资助金额:
    $ 63.96万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Sustainable ABI: Arctos Sustainability
合作研究:可持续 ABI:Arctos 可持续性
  • 批准号:
    2034568
  • 财政年份:
    2021
  • 资助金额:
    $ 63.96万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: FuTRES, an Ontology-Based Functional Trait Resource for Paleo- and Neo-biologists
合作研究:ABI 创新:FuTRES,为古生物学家和新生物学家提供的基于本体的功能性状资源
  • 批准号:
    2201182
  • 财政年份:
    2021
  • 资助金额:
    $ 63.96万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Development: Symbiota2: Enabling greater collaboration and flexibility for mobilizing biodiversity data
协作研究:ABI 开发:Symbiota2:为调动生物多样性数据提供更大的协作和灵活性
  • 批准号:
    2209978
  • 财政年份:
    2021
  • 资助金额:
    $ 63.96万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Towards Computational Exploration of Large-Scale Neuro-Morphological Datasets
合作研究:ABI 创新:大规模神经形态数据集的计算探索
  • 批准号:
    2028361
  • 财政年份:
    2020
  • 资助金额:
    $ 63.96万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Enabling machine-actionable semantics for comparative analyses of trait evolution
合作研究:ABI 创新:启用机器可操作的语义以进行特征进化的比较分析
  • 批准号:
    2048296
  • 财政年份:
    2020
  • 资助金额:
    $ 63.96万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Development: Integrated platforms for protein structure and function predictions
合作研究:ABI开发:蛋白质结构和功能预测的集成平台
  • 批准号:
    2021734
  • 财政年份:
    2020
  • 资助金额:
    $ 63.96万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Biofilm Resource and Information Database (BRaID): A Tool to Fuse Diverse Biofilm Data Types
合作研究:ABI 创新:生物膜资源和信息数据库 (BRaID):融合多种生物膜数据类型的工具
  • 批准号:
    2027203
  • 财政年份:
    2019
  • 资助金额:
    $ 63.96万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Development: Building a Pipeline for Validation, Curation and Archiving of Integrative/Hybrid Models
合作研究:ABI 开发:构建集成/混合模型的验证、管理和归档管道
  • 批准号:
    1756250
  • 财政年份:
    2018
  • 资助金额:
    $ 63.96万
  • 项目类别:
    Continuing Grant
Collaborative Research: ABI Development: The next stage in protein-protein docking
合作研究:ABI 开发:蛋白质-蛋白质对接的下一阶段
  • 批准号:
    1759472
  • 财政年份:
    2018
  • 资助金额:
    $ 63.96万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Quantifying biogeographic history: a novel model-based approach to integrating data from genes, fossils, specimens, and environments
合作研究:ABI 创新:量化生物地理历史:一种基于模型的新颖方法来整合来自基因、化石、标本和环境的数据
  • 批准号:
    1759729
  • 财政年份:
    2018
  • 资助金额:
    $ 63.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了