Biomechanical Regulation in Human Neural Induction

人类神经感应的生物力学调节

基本信息

  • 批准号:
    1662835
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-15 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Neural tube defects are among the most common birth defects and affect more than 500,000 infants worldwide each year. Neural tube defects can result in severe health problems, including paralysis of legs, brain damage, and even death. To develop novel approaches for the prevention and diagnosis of neural tube defects, a fundamental understanding of the development of the central nervous system is required. Using animal models, genetic and biochemical factors that regulate neural induction, the first stage of the central nervous system development, have been partially unraveled. Recent studies suggest that the cell fate decision in the neural induction is regulated by biomechanical cues. This mechanical mechanism is poorly understood and very difficult to study using animal models. This research will build a series of novel cell culture tools to investigate the genetic, biochemical and biomechanical interactions during neural induction. These new tools will provide the ability to perform experiments with lower costs and not using animal subjects to determine the mechanical effects on neural tube formation. Fundamental data on how the mechanical environment of the cells changes their behavior during neural tube development will be collected. The principal investigator will engage K-12, undergraduate and graduate students with diverse ethnic backgrounds and genders with this interdisciplinary bioengineering research, and encourage them to pursue science and engineering careers.This project will test the hypothesis that mechanical interactions dictate morphogenic events in neural development. Micropatterned cell culture environments are known to cause human cells to mimic the spatial patterning of neuroepithelial cells and neural plate border cells of the neural plate, and thus will be used to model neural induction. Drug treatment and a novel device which locally expands the cells located in the designated regions of micropatterns to dynamically regulate cell shape and force will be used to investigate how cell spatial patterning in the in vitro neural induction model regulates cell shape and force. The mechanotransduction pathways in neural induction will be investigated, focusing on the functional involvement of YAP, BMP and Wnt signals. Lastly, a radial chemical gradient generation device integrated with the micropatterning platform will be developed to interrogate whether biochemical gradient can also induce cell spatial patterning during neural induction, and whether cell shape and force act downstream of biochemical gradient or work independently to determine lineage specification. Using integrative microsystems with the capability to fine-tune chemical and mechanical environment, this research provides for the first time a quantitative analysis of the interactions between biochemical and biomechanical cues in neural development.
神经管缺陷是最常见的出生缺陷之一,每年影响全球50多万婴儿。神经管缺陷会导致严重的健康问题,包括腿部瘫痪,脑损伤,甚至死亡。为了开发预防和诊断神经管缺陷的新方法,需要对中枢神经系统的发育有基本的了解。使用动物模型,调节神经诱导(中枢神经系统发育的第一阶段)的遗传和生化因素已部分解开。最近的研究表明,神经诱导过程中细胞命运的决定是由生物力学线索调节的。 这种机械机制知之甚少,很难使用动物模型进行研究。本研究将建立一系列新的细胞培养工具,以研究神经诱导过程中的遗传、生化和生物力学相互作用。这些新工具将提供以较低成本进行实验的能力,并且不使用动物受试者来确定对神经管形成的机械影响。将收集关于细胞的机械环境如何在神经管发育期间改变其行为的基本数据。 主要研究者将吸引来自不同种族背景和性别的K-12,本科生和研究生参与这项跨学科的生物工程研究,并鼓励他们追求科学和工程事业。该项目将测试机械相互作用决定神经发育中的形态发生事件的假设。已知微图案化的细胞培养环境导致人类细胞模仿神经板的神经上皮细胞和神经板边缘细胞的空间图案化,因此将用于模拟神经诱导。药物治疗和一种新的装置,局部扩大位于指定区域的微图案的细胞,以动态调节细胞的形状和力,将被用来研究如何在体外神经诱导模型中的细胞空间图案调节细胞的形状和力。将研究神经诱导中的机械转导途径,重点关注雅普、BMP和Wnt信号的功能参与。最后,将开发与微图案化平台集成的径向化学梯度生成装置,以询问生化梯度是否也可以在神经诱导期间诱导细胞空间图案化,以及细胞形状和力是否在生化梯度的下游作用或独立工作以确定谱系规范。使用具有微调化学和机械环境能力的集成微系统,这项研究首次提供了神经发育中生物化学和生物力学线索之间相互作用的定量分析。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Temporal Modulations of NODAL, BMP, and WNT Signals Guide the Spatial Patterning in Self-Organized Human Ectoderm Tissues
NODAL、BMP 和 WNT 信号的时间调制指导自组织人类外胚层组织的空间模式
  • DOI:
    10.1016/j.matt.2020.04.012
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    18.9
  • 作者:
    Xie, Tianfa;Kang, Jiming;Pak, ChangHui;Yuan, Hongyan;Sun, Yubing
  • 通讯作者:
    Sun, Yubing
Patterning Neuroepithelial Cell Sheet via a Sustained Chemical Gradient Generated by Localized Passive Diffusion Devices
通过局部被动扩散装置产生的持续化学梯度对神经上皮细胞片进行图案化
  • DOI:
    10.1021/acsbiomaterials.0c01365
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Li, Ningwei;Yang, Feiyu;Parthasarathy, Subiksha;Pierre, Sarah St.;Hong, Kelly;Pavon, Narciso;Pak, ChangHui;Sun, Yubing
  • 通讯作者:
    Sun, Yubing
Single-Cell Optogenetic Control of Calcium Signaling with a High-Density Micro-LED Array
  • DOI:
    10.1016/j.isci.2019.10.024
  • 发表时间:
    2019-11-22
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Mao, Dacheng;Li, Ningwei;Xu, Guangyu
  • 通讯作者:
    Xu, Guangyu
Heavy Metal Exposure Leads to Rapid Changes in Cellular Biophysical Properties
  • DOI:
    10.1021/acsbiomaterials.9b01640
  • 发表时间:
    2020-04-01
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Zhu,Peiran;Hawkins,Jamar;Sun,Yubing
  • 通讯作者:
    Sun,Yubing
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yubing Sun其他文献

A Wireless Integrated EEG–fNIRS System for Brain Function Monitoring
用于脑功能监测的无线集成 EEG-fNIRS 系统
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Wenjie Cui;Kai Lin;Guangda Liu;Yubing Sun;Jing Cai
  • 通讯作者:
    Jing Cai
Mechanotransduction-Induced Reversible Phenotypic Switching in Prostate Cancer Cells.
前列腺癌细胞中机械转导诱导的可逆表型转换。
  • DOI:
    10.1016/j.bpj.2017.02.012
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Koh Meng Aw Yong;Yubing Sun;S. Merajver;Jianping Fu
  • 通讯作者:
    Jianping Fu
The recent advances of MnFesub2/subOsub4/sub-based nanoparticles in environmental application: A review
基于 MnFe₂O₄ 的纳米粒子在环境应用中的最新进展:综述
  • DOI:
    10.1016/j.scitotenv.2024.176378
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
    8.000
  • 作者:
    Yubing Sun;Jiashuo Feng;Weiyu Zhu;Rongbo Hou;Bo Zhang;Alhadi Ishag
  • 通讯作者:
    Alhadi Ishag
Simultaneous removal of U(VI) and Re(VII) by highly efficient functionalized ZIF-8 nanosheets adsorbent
高效功能化 ZIF-8 纳米片吸附剂同时去除 U(VI) 和 Re(VII)
  • DOI:
    10.1016/j.jhazmat.2020.122398
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Jie Li;Zheng Wu;Qingyun Duan;Xuede Li;Ying Li;Hamed Alsulami;Mohammed Sh Alhodaly;Tasawar Hayat;Yubing Sun
  • 通讯作者:
    Yubing Sun
Visualization of mechanical forces in 3D cell models with molecular DNA tension probe
  • DOI:
    10.1016/j.bpj.2022.11.687
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Qian Tian;Feiyu Yang;Yubing Sun;Mingxu You
  • 通讯作者:
    Mingxu You

Yubing Sun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yubing Sun', 18)}}的其他基金

Innervating stackable neural organoid slices with tissue-like mesh electrodes for improved neural circuit development and characterization
具有组织样网状电极的神经支配可堆叠神经类器官切片,可改善神经回路的发育和表征
  • 批准号:
    2326703
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Mechanobiology of Planar Cell Polarity
职业:平面细胞极性的力学生物学
  • 批准号:
    1846866
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Elucidating spatial and epigenetic regulation of gene expression during human development using photopatterning and single-cell multiomics
职业:利用光模式和单细胞多组学阐明人类发育过程中基因表达的空间和表观遗传调控
  • 批准号:
    2339849
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
How long noncoding RNAs promote human metabolic flexibility through regulation of adipocyte lipid storage and breakdown.
非编码 RNA 通过调节脂肪细胞脂质储存和分解来促进人类代谢灵活性的时间有多长。
  • 批准号:
    MR/Y011368/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Fellowship
Human Leukocyte Antigen-A and -B regulation of Natural Killer cell function
人类白细胞抗原 A 和 B 对自然杀伤细胞功能的调节
  • 批准号:
    DP230103117
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Projects
Regulation of human tendon development and regeneration
人体肌腱发育和再生的调节
  • 批准号:
    10681951
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Modeling and Mapping Human Action Regulation Networks
人类行为调节网络的建模和映射
  • 批准号:
    10712708
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Regulation of human intestinal nutrient absorption by adipocyte-derived factors
脂肪细胞衍生因子对人体肠道营养吸收的调节
  • 批准号:
    10796110
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
The role of VSNL1 in human heart rate regulation
VSNL1在人体心率调节中的作用
  • 批准号:
    10750747
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Formation and regulation of the human insulin-responsive intracellular GLUT4 transport pathway
人胰岛素反应性细胞内 GLUT4 转运途径的形成和调节
  • 批准号:
    MR/X018377/1
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
Negative regulation of human antiviral RNAi by PACT
PACT 对人类抗病毒 RNAi 的负调控
  • 批准号:
    10667112
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Investigating PUM1 mediated post-transcriptional regulation of human hemoglobin switching and erythropoiesis
研究 PUM1 介导的人血红蛋白转换和红细胞生成的转录后调节
  • 批准号:
    10568059
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了