Collaborative Research: A Multi-Physics Approach to Advance Sustainable Engineering Materials

协作研究:推进可持续工程材料的多物理方法

基本信息

项目摘要

Geopolymers have tremendous potential to be used as a sustainable material for structural engineering applications. Compared to portland cement concrete, geopolymers are more durable and less energy- and resource-intensive to manufacture due to their use of waste by-product materials. However, their widespread adoption is hindered due to a lack of understanding about geopolymer formation. Using a nondestructive microwave technique coupled with materials characterization methods, geopolymer reaction mechanisms can be studied and modeled, especially those involving water. The outcomes of the project will provide material design tools for geopolymers to become a staple material used to build the nation?s future sustainable structures. This research will also improve the prediction of strength, durability, and early-age properties of current structural materials such as portland cement concrete and advance other future materials with similar compositions. Further, the microwave-based assessment technique evolved from this project will enable in-situ evaluation of materials that undergo a hardening reaction after placement in the field thereby offering structural health monitoring and enhancing the construction quality control. This work will also include mentoring a diverse team of researchers and development of outreach activities that support the success of Native American, minority, female, and undergraduate students.This research will advance the fundamental understanding of geopolymer reaction mechanisms, which is critical for the advancement of viable geopolymer compositions for use as sustainable structural materials. Microwave techniques will be used to discern changes in material properties through dielectric measurements. Dielectric mixing models will be corroborated with multi-scale materials characterization techniques to quantify changes in water binding and corresponding phase composition transformations in geopolymers. This multi-physics approach will culminate in two new material models. The first model will link the phase formation mechanisms that occur during geopolymerization reaction with setting, rheological, and mechanical behavior. The second model will extend Powers Model for cement hydration to alkali-activated materials. Such a model will allow materials engineers to optimize geopolymer microstructures based on composition and curing inputs. These models can be extended for other materials with calcium-silicate chemistries and variable water binding. This work will also lay the groundwork for in-situ test methods suitable for assessment of geopolymer maturity, thereby offering structural health monitoring and improved quality control.
地质聚合物作为结构工程应用的可持续材料具有巨大的潜力。与波特兰水泥混凝土相比,地质聚合物由于使用了废弃的副产品材料,因此更耐用,且制造过程中能源和资源密集度较低。然而,由于缺乏对地质聚合物形成的了解,它们的广泛采用受到阻碍。使用无损微波技术与材料表征方法相结合,可以研究和模拟地质聚合物反应机制,尤其是涉及水的反应机制。该项目的成果将为地质聚合物提供材料设计工具,使其成为建造国家未来可持续结构的主要材料。这项研究还将改进对波特兰水泥混凝土等当前结构材料的强度、耐久性和早期性能的预测,并推进具有类似成分的其他未来材料。此外,从该项目发展而来的基于微波的评估技术将能够对在现场放置后发生硬化反应的材料进行现场评估,从而提供结构健康监测并增强施工质量控制。这项工作还将包括指导多元化的研究人员团队,并开展外展活动,以支持美洲原住民、少数民族、女性和本科生的成功。这项研究将增进对地质聚合物反应机制的基本了解,这对于开发用作可持续结构材料的可行地质聚合物组合物至关重要。微波技术将用于通过介电测量来辨别材料特性的变化。介电混合模型将通过多尺度材料表征技术得到证实,以量化地质聚合物中水结合的变化和相应的相组成转变。这种多物理方法将最终产生两种新的材料模型。第一个模型将地质聚合反应过程中发生的相形成机制与凝固、流变和机械行为联系起来。第二个模型将水​​泥水化的鲍尔斯模型扩展到碱激活材料。这样的模型将使材料工程师能够根据成分和固化输入来优化地质聚合物微观结构。这些模型可以扩展到具有硅酸钙化学性质和可变水结合力的其他材料。这项工作还将为适合评估地质聚合物成熟度的现场测试方法奠定基础,从而提供结构健康监测和改进的质量控制。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Microwave materials characterization of geopolymer precursor powders
地质聚合物前驱体粉末的微波材料表征
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Shearer其他文献

Christopher Shearer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Shearer', 18)}}的其他基金

EAPSI: The Effect of Binder Composition on the Carbonation of Fly Ash Geopolymers
EAPSI:粘合剂成分对粉煤灰地质聚合物碳化的影响
  • 批准号:
    1107736
  • 财政年份:
    2011
  • 资助金额:
    $ 20万
  • 项目类别:
    Fellowship Award

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
  • 批准号:
    2409652
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347423
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343599
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
  • 批准号:
    2348956
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: GEM--Multi-scale Magnetosphere-Ionosphere-Thermosphere Coupling Dynamics Driven by Bursty Bulk Flows
合作研究:GEM——突发体流驱动的多尺度磁层-电离层-热层耦合动力学
  • 批准号:
    2349872
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Evaluating Access: How a Multi-Institutional Network Promotes Equity and Cultural Change through Expanding Student Voice
合作研究:评估访问:多机构网络如何通过扩大学生的声音来促进公平和文化变革
  • 批准号:
    2309310
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: Evaluating Access: How a Multi-Institutional Network Promotes Equity and Cultural Change through Expanding Student Voice
合作研究:评估访问:多机构网络如何通过扩大学生的声音来促进公平和文化变革
  • 批准号:
    2309308
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
  • 批准号:
    2348955
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Evaluating Access: How a Multi-Institutional Network Promotes Equity and Cultural Change through Expanding Student Voice
合作研究:评估访问:多机构网络如何通过扩大学生的声音来促进公平和文化变革
  • 批准号:
    2309309
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了