Quantum-Classical Path Integral Methodology
量子经典路径积分方法
基本信息
- 批准号:1665281
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nancy Makri of the University of Illinois is supported by an award from the Chemical Theory, Models and Computational Methods program in the Division of Chemistry to develop new, rigorous computational methods to study electron and proton transfer processes. Many dynamical processes in large chemical or biological systems can be described successfully and very efficiently through classical trajectory simulations. However, chemical and biological reactions frequently involve the transfer of electrons or protons. These light particles often need to be studied using quantum mechanics. Electron and many proton transfer reactions exhibit pronounced quantum effects and classical trajectories are not adequate for modeling such processes. Numerical solution of the quantum mechanical equations of motion, however is extremely computationally demanding. The most profitable approach for systems of any size is the combination of quantum and classical trajectory simulation tools. It is not always easy to combine classical and quantum mechanics without introducing severe approximations which may result in inaccurate results. This is because classical mechanics is localized in space, i.e., at each point in time, each atom has a definite position and momentum. Quantum mechanics is usually represented in terms of waves, which are delocalized. Makri addresses this apparent incompatibility via a novel quantum-classical path integral (QCPI) approach, which uses a local description of the quantum particles, eliminating the need for approximations and allowing simulations with unprecedented accuracy. Makri and her research group teach a hands-on lecture course entitled "Music, light and the atom" which she developed. It is aimed at high school students, presenting the basic ideas of quantum mechanics through analogies to music. The QCPI formulation treats the interaction between quantum and classical degrees of freedom in full atomistic detail through a dynamical phase along each quantum-classical path. However, the number of quantum paths grows exponentially with propagation time, and each quantum path specifies a different classical trajectory. By exploiting phase relations that make distinct contributions to decoherence, Makri has shown that the QCPI expression can be evaluated with only modest computational effort. The proposed work introduces new ideas based on quantum interference, zero-point energy and spontaneous phonon emission that can be used to further accelerate QCPI calculations by orders of magnitude, leading to a highly accurate methodology applicable to complex chemical processes with effort comparable to that employed in typical molecular dynamics simulations.
伊利诺伊大学的Nancy Makri获得了化学系化学理论,模型和计算方法计划的奖项,以开发新的,严格的计算方法来研究电子和质子转移过程。经典的轨道模拟方法可以有效地描述大型化学或生物系统中的许多动力学过程。 然而,化学和生物反应经常涉及电子或质子的转移。 这些轻粒子通常需要用量子力学来研究。 电子和许多质子转移反应表现出明显的量子效应和经典的轨迹是不足以模拟这样的过程。 然而,量子力学运动方程的数值解在计算上要求极高。 对于任何规模的系统,最有利可图的方法是量子和经典轨迹模拟工具的结合。 联合收割机结合经典和量子力学而不引入可能导致不准确结果的严格近似并不总是容易的。 这是因为经典力学在空间中是局部化的,即,在每一个时间点上,每个原子都有一个确定的位置和动量。 量子力学通常用离域的波来表示。 Makri通过一种新的量子经典路径积分(QCPI)方法解决了这种明显的不兼容性,该方法使用量子粒子的局部描述,消除了近似的需要,并允许以前所未有的精度进行模拟。 马克里和她的研究小组教授她开发的题为“音乐、光和原子”的实践讲座课程。 它针对高中生,通过类比音乐来展示量子力学的基本思想。QCPI表述通过沿每个量子-经典路径的沿着动力学相位以完全原子细节处理量子自由度和经典自由度之间的相互作用。然而,量子路径的数量随传播时间呈指数增长,并且每个量子路径指定不同的经典轨迹。 通过利用相位关系对退相干有明显的贡献,马克里证明了QCPI表达式可以用适度的计算工作来计算。 拟议的工作引入了基于量子干涉,零点能和自发声子发射的新思想,可用于进一步加速QCPI计算的数量级,从而产生一种适用于复杂化学过程的高度准确的方法,其工作量可与典型分子动力学模拟中采用的方法相媲美。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quasiclassical Correlation Functions from the Wigner Density Using the Stability Matrix
使用稳定性矩阵的维格纳密度的拟经典相关函数
- DOI:10.1021/acs.jcim.9b00081
- 发表时间:2019
- 期刊:
- 影响因子:5.6
- 作者:Bose, Amartya;Makri, Nancy
- 通讯作者:Makri, Nancy
Communication: Modular path integral: Quantum dynamics via sequential necklace linking
- DOI:10.1063/1.5024411
- 发表时间:2018-03-14
- 期刊:
- 影响因子:4.4
- 作者:Makri, Nancy
- 通讯作者:Makri, Nancy
Quantum‐classical path integral evaluation of reaction rates with a near‐equilibrium flux formulation
- DOI:10.1002/qua.26618
- 发表时间:2021-02
- 期刊:
- 影响因子:2.2
- 作者:Amartya Bose;N. Makri
- 通讯作者:Amartya Bose;N. Makri
Wigner Distribution by Adiabatic Switching in Normal Mode or Cartesian Coordinates and Molecular Applications
- DOI:10.1021/acs.jctc.8b00179
- 发表时间:2018-11-01
- 期刊:
- 影响因子:5.5
- 作者:Bose, Amartya;Makri, Nancy
- 通讯作者:Makri, Nancy
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nancy Makri其他文献
Effects of periodic driving on asymmetric two-level systems coupled to dissipative environments
周期性驱动对与耗散环境耦合的不对称两能级系统的影响
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
Garo Taft;Nancy Makri - 通讯作者:
Nancy Makri
Nancy Makri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nancy Makri', 18)}}的其他基金
Real-time path integral methodology for condensed-phase quantum dynamics
凝聚相量子动力学的实时路径积分方法
- 批准号:
1955302 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Quantum-Classical Path Integral Methodology
量子经典路径积分方法
- 批准号:
1362826 - 财政年份:2014
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Iterative Monte Carlo path integral methods for quantum dynamics
量子动力学的迭代蒙特卡罗路径积分方法
- 批准号:
1112422 - 财政年份:2011
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Simulation methods for dynamical processes in quantum fluids
量子流体动力学过程的模拟方法
- 批准号:
0809699 - 财政年份:2008
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Forward-backward quantum-semiclassical dynamics in solution
解中的前向-后向量子半经典动力学
- 批准号:
0518452 - 财政年份:2005
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
ITR-ASE-sim Path integral methods for quantum dynamics
ITR-ASE-sim 量子动力学路径积分方法
- 批准号:
0427082 - 财政年份:2004
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Forward-backward Semiclassical Dynamics for Large-scale Simulation
用于大规模仿真的前向-后向半经典动力学
- 批准号:
0212640 - 财政年份:2002
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Path integral and semiclassical approaches to the dynamics of large chemical systems
大型化学系统动力学的路径积分和半经典方法
- 批准号:
9877050 - 财政年份:1999
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Multidimensional Quantum Dynamics Via Improved Propagator Path Integral Methods
通过改进的传播路径积分方法的多维量子动力学
- 批准号:
9313603 - 财政年份:1993
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
NSF Young Investigator: Theoretical Studies of Quantum Dynamics of Polyatomic Systems
NSF青年研究员:多原子系统量子动力学的理论研究
- 批准号:
9357102 - 财政年份:1993
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
相似海外基金
Foundations of Classical and Quantum Verifiable Computing
经典和量子可验证计算的基础
- 批准号:
MR/X023583/1 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Fellowship
Mixed Quantum-Classical Semiclassical Theory: Finding Reaction Paths in Open Quantum Systems
混合量子经典半经典理论:寻找开放量子系统中的反应路径
- 批准号:
2404809 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Understanding Emission, Absorption and Energy Transfer Involving Classical and Quantum Light Interacting with Molecules
了解涉及经典光和量子光与分子相互作用的发射、吸收和能量转移
- 批准号:
2347622 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
- 批准号:
2336135 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CAREER: Symmetries and Classical Physics in Machine Learning for Science and Engineering
职业:科学与工程机器学习中的对称性和经典物理学
- 批准号:
2339682 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
A Polytopal View of Classical Polynomials
经典多项式的多面观
- 批准号:
2348676 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
- 批准号:
2423960 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collective Quantum Thermodynamics: Quantum vs Classical
集体量子热力学:量子与经典
- 批准号:
MR/Y003845/1 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Fellowship
The Cultural Legacies of the British Empire: Classical Music's Colonial History (1750-1900)
大英帝国的文化遗产:古典音乐的殖民历史(1750-1900)
- 批准号:
MR/X03559X/1 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Fellowship
FET: SHF: Small: A Verification Framework for Hybrid Classical and Quantum Protocols (VeriHCQ)
FET:SHF:小型:混合经典和量子协议的验证框架 (VeriHCQ)
- 批准号:
2330974 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant