Integer flows, circular flow indices and modulo orientations
整数流量、循环流量指数和模方向
基本信息
- 批准号:1700218
- 负责人:
- 金额:$ 21.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-05-01 至 2021-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports the principal investigator's research in graph theory, and specifically flows, coloring, and connectivity in graphs. This area is closely related to computer science, operations research, data mining, and the neurosciences, where graphs are abstract mathematical notions used to model networks, such as communication and transportation networks, social networks, surveillance data, pathways in bioinformatics, and neural-networks. Various graph coloring problems have been considered as effective models for radio channel assignment/distribution, and flow problems originally arise in optimizing traffic or network. This project is concerned with structural problems in networks. Integer flow theory, introduced by Tutte as a dual of the graph/map coloring problem, is the major subject of this proposed project. Recently, the principal investigator (collaborating with Lovasz, Thomassen and Wu) successfully proved that every 6-edge-connected graph admits a nowhere-zero 3-flow, and (collaborating with Thomassen and the team at WVU) discovered a relation between strongly connected orientations and circular flow indices. The principal investigator will continue his research work in this direction by determining the flow indices for graphs with various connectivity, investigating flows of graphs embedded on non-orientable surfaces, studying modulo orientations of less connected graphs for better solutions to Tutte's flow conjectures.
该奖项支持首席研究员在图论方面的研究,特别是图中的流,着色和连通性。这个领域与计算机科学、运筹学、数据挖掘和神经科学密切相关,其中图是用于建模网络的抽象数学概念,例如通信和运输网络、社交网络、监视数据、生物信息学中的路径和神经网络。各种图着色问题被认为是无线信道分配/分配的有效模型,而流问题最初出现在业务或网络优化中。这个项目涉及网络中的结构问题。 Tutte提出的图/地图着色问题的对偶问题--图流理论是本项目的主要研究对象。最近,首席研究员(与Lovasz,Wuassen和Wu合作)成功地证明了每个6边连通图都允许无零3流,并且(与Wuassen和WVU的团队合作)发现了强连通方向和循环流指数之间的关系。首席研究员将继续他的研究工作,在这个方向上,通过确定流动指数的图形与各种连接,调查流动的图形嵌入在非定向表面,研究模方向的连接较少的图形更好的解决方案,以图特的流动aesthetures。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Signed Graphs: From Modulo Flows to Integer-Valued Flows
- DOI:10.1137/17m1126072
- 发表时间:2017-04
- 期刊:
- 影响因子:0
- 作者:Jian Cheng;You Lu;Rong Luo;Cun-Quan Zhang
- 通讯作者:Jian Cheng;You Lu;Rong Luo;Cun-Quan Zhang
Flows on signed graphs without long barbells
没有长杠铃的符号图上的流动
- DOI:10.1137/18m1222818
- 发表时间:2020
- 期刊:
- 影响因子:0.8
- 作者:You Lu;Rong Luo;Michael Schubert;Eckhard Steffen;Cun-Quan Zhang
- 通讯作者:Cun-Quan Zhang
Edge-Cuts of Optimal Average Weights
最佳平均权重的边缘切割
- DOI:10.1142/s0217595919400062
- 发表时间:2019
- 期刊:
- 影响因子:1.4
- 作者:Payne, Scott;Fuller, Edgar;Zhang, Cun-Quan
- 通讯作者:Zhang, Cun-Quan
Shortest circuit covers of signed graphs
- DOI:10.1016/j.jctb.2018.06.001
- 发表时间:2015-10
- 期刊:
- 影响因子:0
- 作者:You Lu;Jian Cheng;Rong Luo;Cun-Quan Zhang
- 通讯作者:You Lu;Jian Cheng;Rong Luo;Cun-Quan Zhang
Cycle double covers and non-separating cycles
- DOI:10.1016/j.ejc.2019.06.006
- 发表时间:2017-11
- 期刊:
- 影响因子:0
- 作者:Arthur Hoffmann-Ostenhof;Cun-Quan Zhang;Zhang Zhang-Zhang
- 通讯作者:Arthur Hoffmann-Ostenhof;Cun-Quan Zhang;Zhang Zhang-Zhang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cun-Quan Zhang其他文献
Longest cycles and their chords
- DOI:
10.1002/jgt.3190110409 - 发表时间:
1987-12 - 期刊:
- 影响因子:0
- 作者:
Cun-Quan Zhang - 通讯作者:
Cun-Quan Zhang
Vertex-coloring 3-edge-weighting of some graphs
一些图的顶点着色 3 边加权
- DOI:
10.1016/j.disc.2016.08.011 - 发表时间:
2017-02 - 期刊:
- 影响因子:0.8
- 作者:
Yezhou Wu;Cun-Quan Zhang;Bao-Xuan Zhu - 通讯作者:
Bao-Xuan Zhu
Nowhere-zero 3-flows of graphs with prescribed sizes of odd edge cuts
具有指定奇数边切割尺寸的图的无处零 3 流
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:1
- 作者:
Rong Luo;Zhengke Miao;Rui Xu;Cun-Quan Zhang - 通讯作者:
Cun-Quan Zhang
A note about shortest cycle covers
- DOI:
10.1016/j.disc.2005.06.013 - 发表时间:
2005-10-06 - 期刊:
- 影响因子:
- 作者:
Jinlong Shu;Cun-Quan Zhang - 通讯作者:
Cun-Quan Zhang
Uniquely forced perfect matching and unique 3-edge-coloring
独特的强制完美匹配和独特的三边着色
- DOI:
10.1016/j.dam.2016.07.002 - 发表时间:
2016-12 - 期刊:
- 影响因子:1.1
- 作者:
Yezhou Wu;Dong Ye;Cun-Quan Zhang - 通讯作者:
Cun-Quan Zhang
Cun-Quan Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cun-Quan Zhang', 18)}}的其他基金
Integer Flows and Tutte Orientations
整数流和 Tutte 方向
- 批准号:
1264800 - 财政年份:2013
- 资助金额:
$ 21.01万 - 项目类别:
Standard Grant
Mathematical Sciences: Circuit Covers and Integer Flows - Research in Graph Theory
数学科学:电路覆盖和整数流 - 图论研究
- 批准号:
9306379 - 财政年份:1993
- 资助金额:
$ 21.01万 - 项目类别:
Standard Grant
Mathematical Sciences: Cycle Cover, Integer Flow and Coloring - Research in Graph Theory
数学科学:环覆盖、整数流和着色 - 图论研究
- 批准号:
9104824 - 财政年份:1991
- 资助金额:
$ 21.01万 - 项目类别:
Continuing Grant
Mathematical Sciences: Cycles and Paths in Graphs---Researchin Graph Theory
数学科学:图中的循环与路径---图论研究
- 批准号:
8906973 - 财政年份:1989
- 资助金额:
$ 21.01万 - 项目类别:
Standard Grant
相似海外基金
Determining best practices for sustainability of the circular bioeconomy: Characterizing flows and transformations of organic carbon, nutrients and contaminants
确定循环生物经济可持续性的最佳实践:表征有机碳、营养物和污染物的流动和转化
- 批准号:
RGPIN-2020-04863 - 财政年份:2022
- 资助金额:
$ 21.01万 - 项目类别:
Discovery Grants Program - Individual
Determining best practices for sustainability of the circular bioeconomy: Characterizing flows and transformations of organic carbon, nutrients and contaminants
确定循环生物经济可持续性的最佳实践:表征有机碳、营养物和污染物的流动和转化
- 批准号:
RGPIN-2020-04863 - 财政年份:2021
- 资助金额:
$ 21.01万 - 项目类别:
Discovery Grants Program - Individual
Determining best practices for sustainability of the circular bioeconomy: Characterizing flows and transformations of organic carbon, nutrients and contaminants
确定循环生物经济可持续性的最佳实践:表征有机碳、营养物和污染物的流动和转化
- 批准号:
RGPIN-2020-04863 - 财政年份:2020
- 资助金额:
$ 21.01万 - 项目类别:
Discovery Grants Program - Individual
Mixing in non-circular jet flows
在非圆形射流中混合
- 批准号:
5484-2002 - 财政年份:2005
- 资助金额:
$ 21.01万 - 项目类别:
Discovery Grants Program - Individual
Mixing in non-circular jet flows
在非圆形射流中混合
- 批准号:
5484-2002 - 财政年份:2004
- 资助金额:
$ 21.01万 - 项目类别:
Discovery Grants Program - Individual
Mixing in non-circular jet flows
在非圆形射流中混合
- 批准号:
5484-2002 - 财政年份:2003
- 资助金额:
$ 21.01万 - 项目类别:
Discovery Grants Program - Individual
Mixing in non-circular jet flows
在非圆形射流中混合
- 批准号:
5484-2002 - 财政年份:2002
- 资助金额:
$ 21.01万 - 项目类别:
Discovery Grants Program - Individual
Study on the Removal of the Harmful Drag by Controlling the Interference of Boundary-Layer Flows
控制边界层流干扰去除有害阻力的研究
- 批准号:
14550139 - 财政年份:2002
- 资助金额:
$ 21.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Combining lateral conduit flows 2) flow past boundary discontinuities at low cavitation numbers 3) application of curvilinear flow theory to circular crested weirs
结合横向管道流 2) 流过低空化数下的边界不连续性 3) 曲线流理论在圆顶堰中的应用
- 批准号:
7608-1991 - 财政年份:1993
- 资助金额:
$ 21.01万 - 项目类别:
Discovery Grants Program - Individual
Combining lateral conduit flows 2) flow past boundary discontinuities at low cavitation numbers 3) application of curvilinear flow theory to circular crested weirs
结合横向管道流 2) 流过低空化数下的边界不连续性 3) 曲线流理论在圆顶堰中的应用
- 批准号:
7608-1991 - 财政年份:1992
- 资助金额:
$ 21.01万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




