Groups and Arithmetic
群与算术
基本信息
- 批准号:1702152
- 负责人:
- 金额:$ 17.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project concerns the deep connections between two apparently very different areas of algebra. The first is group theory, which is the formal study of symmetry. The second is algebraic number theory, the study of numbers which can be constructed by algebraic processes, like taking square roots (as opposed to numbers like e and pi which arise only through limit processes belonging to calculus). The main link between these two fields is provided by algebraic geometry, the geometric study of systems of polynomial equations. A key theme in the proposed work is monodromy, which encapsulates the symmetries revealed by a varying system as the variable follows a closed loop. Monodromy problems arise in many guises, in both pure and applied mathematics. For instance some of the techniques under study in this project have been used to determine which kinds of computations can be carried out by different kinds of quantum computer. Algebraic number theory has found important practical applications and especially plays a key role in the development of modern cryptosystems.The theme of this project is the reciprocal relationship between group theory and algebraic number theory or arithmetic algebraic geometry. This includes using group theory as a tool, for instance in analyzing images of l-adic Galois representations, or Mordell-Weil groups of abelian varieties over Galois extensions of the rationals. It also includes studying groups, especially discrete linear groups (including finite groups), using methods from number theory and algebraic geometry, including the circle method, etale cohomology, and deformation theory.
这个项目涉及代数的两个明显不同的领域之间的深层联系。第一个是群论,它是对对称性的正式研究。 第二个是代数数论,研究可以通过代数过程构造的数字,比如平方根(与像e和pi这样的数字相反,这些数字只能通过属于微积分的极限过程产生)。这两个领域之间的主要联系是由代数几何,多项式方程组的几何研究。 在拟议的工作中的一个关键主题是monodromy,它封装的对称性揭示了一个不断变化的系统作为变量遵循一个闭环。 在纯数学和应用数学中,单值问题以多种形式出现。 例如,该项目中正在研究的一些技术已被用于确定不同类型的量子计算机可以执行哪些类型的计算。 代数数论有着重要的实际应用,特别是在现代密码体制的发展中起着关键的作用,本项目的主题是群论与代数数论或算术代数几何之间的相互关系。 这包括使用群论作为工具,例如在分析l-进伽罗瓦表示的图像,或在有理数的伽罗瓦扩展上的阿贝尔变种的莫德尔-韦伊群。 它还包括研究群体,特别是离散线性群体(包括有限群体),使用数论和代数几何的方法,包括圆方法,etale上同调和变形理论。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Words, Hausdorff dimension and randomly free groups
词、Hausdorff 维数和随机自由群
- DOI:10.1007/s00208-017-1635-y
- 发表时间:2018
- 期刊:
- 影响因子:1.4
- 作者:Larsen, Michael;Shalev, Aner
- 通讯作者:Shalev, Aner
A note on Lie algebra cohomology
关于李代数上同调的注解
- DOI:10.2140/ant.2021.15.773
- 发表时间:2021
- 期刊:
- 影响因子:1.3
- 作者:Larsen, Michael J.;Lunts, Valery A.
- 通讯作者:Lunts, Valery A.
Waring’s problem for unipotent algebraic groups
单能代数群的韦林问题
- DOI:10.5802/aif.3283
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Larsen, Michael;Nguyen, Dong Quan
- 通讯作者:Nguyen, Dong Quan
Flatness of the Commutator Map Over $\textrm{SL}_n$
$ extrm{SL}_n$ 上换向器图的平坦度
- DOI:10.1093/imrn/rnz285
- 发表时间:2019
- 期刊:
- 影响因子:1
- 作者:Larsen, Michael;Lu, Zhipeng
- 通讯作者:Lu, Zhipeng
Many Zeros of Many Characters of GL(n,q)
GL(n,q) 的多个字符的多个零
- DOI:10.1093/imrn/rnaa160
- 发表时间:2020
- 期刊:
- 影响因子:1
- 作者:Gallagher, Patrick X;Larsen, Michael J;Miller, Alexander R
- 通讯作者:Miller, Alexander R
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Larsen其他文献
Randomized sham-controlled trial of the 6-month swallowable gas-filled intragastric balloon system for weight loss.
对为期 6 个月的可吞咽充气胃内气球系统进行减肥的随机假对照试验。
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:3.1
- 作者:
Shelby Sullivan;J. Swain;G. Woodman;S. Edmundowicz;T. Hassanein;V. Shayani;John Fang;M. Noar;G. Eid;Wayne J. English;N. Tariq;Michael Larsen;S. Jonnalagadda;D. Riff;J. Ponce;D. Early;E. Volckmann;A. Ibele;Matthew D. Spann;K. Krishnan;J. Bucobo;A. Pryor - 通讯作者:
A. Pryor
Petechial hemorrhages of the tympanic membrane in attempted suicide by hanging: A case report
- DOI:
10.1016/j.jflm.2012.05.007 - 发表时间:
2013-02-01 - 期刊:
- 影响因子:
- 作者:
Eva Rye Rasmussen;Per Leganger Larsen;Kjeld Andersen;Michael Larsen;Klaus Qvortrup;Hans Petter Hougen - 通讯作者:
Hans Petter Hougen
DIAGNOSTIC VALUE AND COST OF MRCP AND EUS FOR THE EVALUATION OF CHOLEDOCHOLITHIASIS: A RETROSPECTIVE COHORT ANALYSIS
- DOI:
10.1016/j.gie.2024.04.1108 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:
- 作者:
Karena Puldon;Logan Pierce;Patrick Avila;Michael Larsen;Sun-Chuan Dai;Mustafa Arain;Abdul Kouanda - 通讯作者:
Abdul Kouanda
Tensor product Markov chains and Weil representations
张量积马尔可夫链与韦伊表示
- DOI:
10.1016/j.jalgebra.2025.05.041 - 发表时间:
2025-11-15 - 期刊:
- 影响因子:0.800
- 作者:
Jason Fulman;Michael Larsen;Pham Huu Tiep - 通讯作者:
Pham Huu Tiep
On The Correlation Of Binary M-sequences
- DOI:
10.1023/a:1008383811226 - 发表时间:
1999-01-01 - 期刊:
- 影响因子:1.200
- 作者:
John Friedlander;Michael Larsen;Daniel Lieman;Igor Shparlinski - 通讯作者:
Igor Shparlinski
Michael Larsen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Larsen', 18)}}的其他基金
RUI: Dynamic Guanidine-based Polymer Networks
RUI:动态胍基聚合物网络
- 批准号:
2105149 - 财政年份:2021
- 资助金额:
$ 17.7万 - 项目类别:
Continuing Grant
Collaborative Research to Explore the Spatial/Temporal Statistical-Physical Structures of Rain in the Vertical Plane
探索垂直平面降雨时空统计物理结构的合作研究
- 批准号:
2001490 - 财政年份:2020
- 资助金额:
$ 17.7万 - 项目类别:
Standard Grant
Developing a Life Sciences Workforce with Strong Quantitative Skills
培养具有强大定量技能的生命科学员工队伍
- 批准号:
1742241 - 财政年份:2018
- 资助金额:
$ 17.7万 - 项目类别:
Standard Grant
Collaborative Research: The Relationship of the Spatial/Temporal Variability of Rain to Scaling
合作研究:降雨的时空变化与尺度的关系
- 批准号:
1823334 - 财政年份:2018
- 资助金额:
$ 17.7万 - 项目类别:
Standard Grant
Collaborative Research: The Meteorological Variability of the Two Dimensional/Temporal Structures of Drop Size Distributions and Rain
合作研究:雨滴尺寸分布和降雨的二维/时间结构的气象变化
- 批准号:
1532977 - 财政年份:2015
- 资助金额:
$ 17.7万 - 项目类别:
Continuing Grant
Collaborative Research: Characterization of the Two-dimensional/Temporal Mosaic of Drop Size Distributions and Spatial Variability (Structure) in Rain
合作研究:雨中液滴尺寸分布和空间变化(结构)的二维/时间镶嵌特征
- 批准号:
1230240 - 财政年份:2012
- 资助金额:
$ 17.7万 - 项目类别:
Continuing Grant
相似海外基金
Arithmetic of Thin Groups and Isogeny-Based Cryptography
稀疏群算法和基于同源的密码学
- 批准号:
2401580 - 财政年份:2024
- 资助金额:
$ 17.7万 - 项目类别:
Continuing Grant
Conference on Arithmetic Geometry and Algebraic Groups
算术几何与代数群会议
- 批准号:
2305231 - 财政年份:2023
- 资助金额:
$ 17.7万 - 项目类别:
Standard Grant
Cohomology of arithmetic groups in GL(2) over definite quaternion algebras
GL(2) 定四元数代数上算术群的上同调
- 批准号:
2884658 - 财政年份:2023
- 资助金额:
$ 17.7万 - 项目类别:
Studentship
Arithmetic Statistics: Asymptotics on number fields and their class groups
算术统计:数域及其类群的渐近
- 批准号:
RGPIN-2020-06146 - 财政年份:2022
- 资助金额:
$ 17.7万 - 项目类别:
Discovery Grants Program - Individual
SaTC: CORE: Small: Markoff Triples, Cryptography, and Arithmetic of Thin Groups
SaTC:核心:小:马可夫三元组、密码学和薄群算术
- 批准号:
2154624 - 财政年份:2022
- 资助金额:
$ 17.7万 - 项目类别:
Standard Grant
CAREER: Stability Phenomena in Topology and Arithmetic Groups
职业:拓扑和算术群中的稳定性现象
- 批准号:
2142709 - 财政年份:2022
- 资助金额:
$ 17.7万 - 项目类别:
Continuing Grant
Arithmetic Questions in the Theory of Linear Algebraic Groups
线性代数群理论中的算术问题
- 批准号:
2154408 - 财政年份:2022
- 资助金额:
$ 17.7万 - 项目类别:
Standard Grant
Arithmetic statistics of Selmer groups with a Galois action
具有伽罗瓦动作的 Selmer 群的算术统计
- 批准号:
2742677 - 财政年份:2022
- 资助金额:
$ 17.7万 - 项目类别:
Studentship