Collaborative Research: Multi-Scale Models and Quantitative Experiments of Red Blood Cells Transmigration through Inter-Endothelial Slits in the Spleen

合作研究:红细胞通过脾脏内皮间缝隙迁移的多尺度模型和定量实验

基本信息

  • 批准号:
    1706571
  • 负责人:
  • 金额:
    $ 30.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

CBET - 1706436/1706571PIs: Peng, Zhangli/del Alamo, Juan CarlosDuring their circulation through the spleen, red blood cells are challenged to squeeze through narrow slits between endothelial cells that are much smaller than the red blood cell itself. The squeezing motion leads to large red cell deformations and significant mechanical forces on the cells that can cause cell rupture. Aged or otherwise altered red blood cells become trapped and are removed from the circulation. The goal of this collaborative project is to understand the mechanics of red blood cell transmigration through narrow slits by a combination of experiments and high-fidelity numerical modeling. Microfluidic-based experiments will be used to measure the forces required for healthy and diseased red blood cells to move through slits with well-defined widths and geometries. A multi-scale computational model will be developed to fully characterize red blood cell transmigration through slits in the spleen. The results will show how transmigration depends on the geometrical and mechanical properties of the red blood cell and its environment from the molecular level to tissue level. This research may also contribute to knowledge about other important physiological processes, including inflammation and the metastatic spread of tumors, in which transmigration of cells through narrow slits plays an important role. Elements of this project will be adapted for hands-on demonstrations for high school students, and to excite youngsters and their parents about the importance and behavior of multi-component vesicles.Squeezing through narrow gaps requires significant mechanical forces and red blood cell deformations, which can lead to bilayer-cytoskeletal detachment, cell volume change, and cell rupture. Despite the importance of transmigration to red cell maintenance, there are no quantitative data available on the deformation and stress distributions of transmigrating red blood cells. A multiscale model of red blood cell transmigration will be developed that accounts explicitly for the lipid bilayer of the cell and its underlying cytoskeleton. A force microscopy technique will be used to measure the mechanical forces experienced by red blood cells while passing through slits of controlled size, stiffness and adhesiveness. Red blood cell deformation will be visualized as they pass through the slits, and the roles of microstructural components of the cells will be examined by pharmacological manipulations. Results from the experiments will be used to validate the computational model. The model in combination with experiment will be used to investigate how molecular alterations affect the filtration of RBCs in the spleen when the microstructural organization of the cells and the splenic environment are systematically altered. Results from these studies will be useful in understanding cellular deformation in physiological processes and in biomedical devices where cells undergo large deformations.
CBET-1706436/1706571 PI:彭、张立/德尔·阿拉莫、胡安·卡洛斯在通过脾循环期间,红细胞受到挑战,要从比红细胞本身小得多的内皮细胞之间的狭缝中挤出来。挤压运动会导致红细胞的大变形和细胞上显著的机械力,这可能会导致细胞破裂。老化或以其他方式改变的红细胞会被捕获,并从循环中移除。这个合作项目的目标是通过实验和高保真数值模拟相结合的方式来了解红细胞通过狭缝迁移的机制。基于微流体的实验将被用来测量健康和患病的红细胞通过具有明确宽度和几何形状的狭缝所需的力。将开发一个多尺度计算模型,以充分表征红细胞通过脾缝隙的迁移。结果将显示轮回如何依赖于红细胞的几何和机械性质以及从分子水平到组织水平的环境。这项研究还可能有助于了解其他重要的生理过程,包括炎症和肿瘤的转移扩散,在这些过程中,细胞通过狭缝的转运起着重要作用。这个项目的内容将被改编成高中生的动手演示,并让年轻人和他们的父母兴奋起来,让他们了解多成分囊泡的重要性和行为。挤压通过狭窄的缝隙需要巨大的机械力和红细胞变形,这可能导致双层细胞骨架分离、细胞体积变化和细胞破裂。尽管轮回对维持红细胞很重要,但关于轮回的红细胞的变形和应力分布,目前还没有定量的数据。将开发一个多尺度的红细胞迁移模型,明确说明细胞及其底层细胞骨架的脂类双层。力显微镜技术将被用来测量红细胞通过大小、硬度和粘附性受控的缝隙时所经历的机械力。当红细胞通过缝隙时,它们的变形将被可视化,细胞的微结构成分的作用将通过药物操作来检验。实验结果将用于验证计算模型。该模型与实验相结合,将用于研究当细胞的微结构组织和脾环境发生系统变化时,分子变化如何影响脾中红细胞的过滤。这些研究的结果将有助于理解细胞在生理过程中的变形以及在细胞发生大变形的生物医学设备中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Juan Carlos del Alamo其他文献

Unraveling the embryonic fate map through the mechanical signature of cells and their trajectories
通过细胞的机械特征及其轨迹揭示胚胎命运图
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Pastor;B. Lombardot;T. Savy;A. Boyreau;R. Doursat;J. M. Goicolea;Andrés Santos;P. Bourgine;Juan Carlos del Alamo;M. Ledesma;N. Peyriéras
  • 通讯作者:
    N. Peyriéras
Fabricating biocompatible polyacrylamide microbeads for cell-generated mechanical force quantification via photoinitiated polymerization
  • DOI:
    10.1016/j.bpj.2021.11.681
  • 发表时间:
    2022-02-11
  • 期刊:
  • 影响因子:
  • 作者:
    Ernesto Criado-Hidalgo;Antoni Garcia-Herreros;Yi-Ting Yeh;Juan C. Lasheras;Juan Carlos del Alamo
  • 通讯作者:
    Juan Carlos del Alamo
A NOVEL TECHNIQUE TO IDENTIFY TRANSPORT TEMPLATES IN THE HUMAN LEFT VENTRICLE USING DOPPLER ECHOCARDIOGRAPHY AND COMPUTATIONAL MODELING
  • DOI:
    10.1016/s0735-1097(13)60869-4
  • 发表时间:
    2013-03-12
  • 期刊:
  • 影响因子:
  • 作者:
    Shawn C. Shadden;Sahar Hendabadi;Yolanda Benito;Raquel Yotti;Javier Bermejo;Juan Carlos del Alamo
  • 通讯作者:
    Juan Carlos del Alamo
Coordinations of Intracellular Flow, Calcium Signal and Cellular Contraction in Migrating Physarum
迁移绒泡菌细胞内流动、钙信号和细胞收缩的协调
Mitral Valve Prosthesis Design Affects Hemodynamic Stasis and Shear In The Dilated Left Ventricle
二尖瓣假体设计影响扩张左心室的血流动力学停滞和剪切力
  • DOI:
    10.1007/s10439-019-02218-z
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    V. Vu;L. Rossini;R. Montes;Josue Campos;Juyeun Moon;P. Martínez‐Legazpi;J. Bermejo;Juan Carlos del Alamo;K. May
  • 通讯作者:
    K. May

Juan Carlos del Alamo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Juan Carlos del Alamo', 18)}}的其他基金

CAREER: Dynamics of anisotropic fluids: a frontier in intracellular microrheology
职业:各向异性流体动力学:细胞内微流变学的前沿
  • 批准号:
    1055697
  • 财政年份:
    2011
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
  • 批准号:
    2409652
  • 财政年份:
    2024
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347423
  • 财政年份:
    2024
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343599
  • 财政年份:
    2024
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
  • 批准号:
    2348956
  • 财政年份:
    2024
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Standard Grant
Collaborative Research: GEM--Multi-scale Magnetosphere-Ionosphere-Thermosphere Coupling Dynamics Driven by Bursty Bulk Flows
合作研究:GEM——突发体流驱动的多尺度磁层-电离层-热层耦合动力学
  • 批准号:
    2349872
  • 财政年份:
    2024
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Standard Grant
Collaborative Research: Evaluating Access: How a Multi-Institutional Network Promotes Equity and Cultural Change through Expanding Student Voice
合作研究:评估访问:多机构网络如何通过扩大学生的声音来促进公平和文化变革
  • 批准号:
    2309310
  • 财政年份:
    2024
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Continuing Grant
Collaborative Research: Evaluating Access: How a Multi-Institutional Network Promotes Equity and Cultural Change through Expanding Student Voice
合作研究:评估访问:多机构网络如何通过扩大学生的声音来促进公平和文化变革
  • 批准号:
    2309308
  • 财政年份:
    2024
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Continuing Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
  • 批准号:
    2348955
  • 财政年份:
    2024
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Standard Grant
Collaborative Research: Evaluating Access: How a Multi-Institutional Network Promotes Equity and Cultural Change through Expanding Student Voice
合作研究:评估访问:多机构网络如何通过扩大学生的声音来促进公平和文化变革
  • 批准号:
    2309309
  • 财政年份:
    2024
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了