Collaborative Research: Engineer a functional 3D vascularized islet organoid from pluripotent stem cells
合作研究:利用多能干细胞设计功能性 3D 血管化胰岛类器官
基本信息
- 批准号:1706674
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PIs: Banerjee, Ipsita / Rege, Kaushal / Hoying, JamesProposal Numbers: 1706674 / 1706268 / 1706742Pancreatic islets are micro-organs that produce and release multiple hormones, primarily insulin, into the blood stream. Deterioration of islet health and function results in diabetes, which has become an epidemic healthcare problem worldwide. A promising treatment of diabetes lies in islet transplantation--where isolated islets from donors are transplanted into the patient. In the absence of sufficient islet donors, the current focus is on generating islets in the laboratory from human pluripotent stem cells (hPSC). Pancreatic islets primarily consist of hormone producing cells interlaced with a dense network of capillaries for efficient transport of released hormones. In addition to nutrient delivery, the islet vasculature plays a critical role in islet development and function. Hence, when deriving islet-organoids from hPSCs, there will be multiple benefits in engineering the intra-islet vasculature, which is the objective of this project. This objective will be achieved by integration of multiple novel techniques, including the aggregation of pancreatic cells into spheroids and the inclusion of microvessel fragments (MFs) obtained from adipose (fat) tissue to enhance vascularization. The most significant impact of the regenerative organoids will be in cell therapy for diabetes. An even more achievable goal is the use of functional islet organoids as an in-vitro model for testing the efficacy and toxicity of drug compounds for diabetes. The interdisciplinary faculty team, representing the University of Pittsburgh, Arizona State University and the University of Louisville, will leverage the multidisciplinary approach of this project to train students at the graduate and undergraduate levels and to broaden outreach programs to increase opportunities for a diverse population of students. The team will develop a joint summer internship program, where minority students from each institution will intern in the other two Universities, thereby enhancing collaborative opportunities as well as student training.The goal of this collaborative project is to engineer in-vitro vascularized pancreatic islet organoids from human pluripotent stem cells (hPSCs). Self-organization of hPSCs will be engineered into heterogeneous three-dimensional (3D) constructs with a physiological islet vascular network and endocrine function. The team has developed a novel hydrogel system that closely mimics the 3D islet physiology through self-organization of hPSC derived pancreatic progenitor cells. The hydrogel platform enables precise control over the 3D culture configuration as well as allowing multicellular aggregation. This is a substantive departure from status quo, where hPSCs are randomly aggregated in a stirred suspension resulting in uncontrolled aggregates of varying size and phenotype. In-vitro vascularization will be engineered by incorporating isolated adipose-derived microvessel fragments within the engineered 3D cellular construct. These microfragments retain the endothelial, vessel matrix components, and supporting cells necessary for angiogenesis. This pre-embedment and development of a vascular network is a substantive departure from status quo, where in-vivo implantation and host vasculature integration is relied upon for microvascular network formation. The project perhaps represents the first attempt to generate in-vitro vascularized pancreatic islet organoids from hPSCs. The Research Plan is organized around three aims: 1) to determine culture conditions inducing aggregation of hPSC derived cells; 2) to induce islet-specific microvascular network within the islet organoids; and 3) to induce and characterize mature islet functionality (endocrine phenotype and glucose responsive insulin production) in the vascularized organoids in vitro and in vivo in an immunocompromised mouse model. It is hypothesized that adequate reproduction of islet microenvironment within the organoid will induce islet-specific vascular characteristics and phenotype in the adipose-derived microvessels. Such regenerative islet organoids will be directly relevant for pancreatic tissue and organ engineering, and methods developed have the potential to transform the field of tissue engineering in general.
PI: Banerjee、Ipsita / Rege、Kaushal / Hoying、James提案编号: 1706674 / 1706268 /1706742胰岛是产生和释放多种激素(主要是胰岛素)进入血流的微器官。胰岛健康和功能的恶化导致糖尿病,糖尿病已成为世界范围内流行的卫生保健问题。糖尿病的一种有希望的治疗方法是胰岛移植--将来自捐赠者的胰岛移植到患者体内。在缺乏足够的胰岛供体的情况下,目前的重点是在实验室中从人类多能干细胞(hPSC)产生胰岛。胰岛主要由激素产生细胞组成,这些细胞与密集的毛细血管网络交织,用于有效运输释放的激素。除了营养输送,胰岛血管系统在胰岛发育和功能中起着关键作用。 因此,当从hPSC衍生胰岛类器官时,在工程化胰岛内脉管系统方面将有多种益处,这是本项目的目标。 这一目标将通过整合多种新技术来实现,包括将胰腺细胞聚集成球状体和包含从脂肪组织获得的微血管片段(MF)以增强血管形成。再生类器官最重要的影响将是糖尿病的细胞治疗。 一个更可实现的目标是使用功能性胰岛类器官作为体外模型,用于测试药物化合物对糖尿病的功效和毒性。 代表匹兹堡大学、亚利桑那州立大学和路易斯维尔大学的跨学科教师团队将利用该项目的多学科方法来培训研究生和本科生,并扩大外展计划,以增加多样化学生的机会。该团队将开发一个联合暑期实习计划,每个机构的少数民族学生将在其他两所大学实习,从而增加合作机会以及学生培训。该合作项目的目标是从人类多能干细胞(hPSC)中体外工程化血管化胰岛类器官。 hPSC的自组织将被工程化为具有生理胰岛血管网络和内分泌功能的异质三维(3D)构建体。该团队开发了一种新的水凝胶系统,通过hPSC衍生的胰腺祖细胞的自组织来密切模拟3D胰岛生理学。水凝胶平台能够精确控制3D培养配置以及允许多细胞聚集。这是与现状的实质性偏离,其中hPSC在搅拌的悬浮液中随机聚集,导致不同大小和表型的不受控制的聚集体。 体外血管化将通过将分离的脂肪来源的微血管片段并入工程化的3D细胞构建体中来工程化。这些微片段保留血管生成所必需的内皮、血管基质成分和支持细胞。血管网络的这种预先嵌入和发展与现状有实质性的不同,在现状中,微血管网络的形成依赖于体内植入和宿主脉管系统整合。该项目可能代表了从hPSC产生体外血管化胰岛类器官的第一次尝试。 研究计划围绕三个目标组织:1)确定诱导hPSC衍生细胞聚集的培养条件; 2)诱导胰岛类器官内的胰岛特异性微血管网络; 3)在免疫功能低下小鼠模型中体外和体内诱导和表征血管化类器官中的成熟胰岛功能(内分泌表型和葡萄糖响应性胰岛素产生)。 假设类器官内胰岛微环境的充分复制将在脂肪来源的微血管中诱导胰岛特异性血管特征和表型。这种再生胰岛类器官将与胰腺组织和器官工程直接相关,并且所开发的方法具有总体上改变组织工程领域的潜力。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Organ-specific ECM arrays for investigating cell-ECM interactions during stem cell differentiation
- DOI:10.1088/1758-5090/abc05f
- 发表时间:2021-01-01
- 期刊:
- 影响因子:9
- 作者:Goh, Saik-Kia;Halfter, Willi;Banerjee, Ipsita
- 通讯作者:Banerjee, Ipsita
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ipsita Banerjee其他文献
Global sensitivity analysis of endotoxin-induced acute inflammatory responses predicts the multimodal dependence of global tissue damage both on host IL-6 responses and endotoxin dose
- DOI:
10.1016/j.jcrc.2012.10.039 - 发表时间:
2013-02-01 - 期刊:
- 影响因子:
- 作者:
Shibin Mathew;John Bartels;Ipsita Banerjee;Yoram Vodovotz - 通讯作者:
Yoram Vodovotz
DIGITAL TECHNOLOGY AND HEALTH ADVOCACY ON COVID-19: A CASE STUDY OF TWITTER HANDLES OF THE WORLD HEALTH ORGANIZATION AND MINISTRY OF HEALTH OF INDIA
关于 COVID-19 的数字技术和健康宣传:世界卫生组织和印度卫生部的 Twitter 手柄案例研究
- DOI:
10.47305/jlia2137191d - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Rajesh Das;Ipsita Banerjee - 通讯作者:
Ipsita Banerjee
Model Independent Parametric Decision Making
- DOI:
10.1023/b:anor.0000045280.55945.e8 - 发表时间:
2004-11-01 - 期刊:
- 影响因子:4.500
- 作者:
Ipsita Banerjee;Marianthi G. Ierapetritou - 通讯作者:
Marianthi G. Ierapetritou
Ipsita Banerjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ipsita Banerjee', 18)}}的其他基金
FMSG:BIO: Integrating Artificial Intelligence with Bioprinting for Future Manufacturing of Organoids
FMSG:BIO:将人工智能与生物打印相结合,用于未来类器官的制造
- 批准号:
2229156 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
MRI: Acquisition of Fluorescence Activated Cell Sorter (FACS) for Multidisciplinary Research and Education at Fordham University
MRI:福特汉姆大学采购荧光激活细胞分选仪 (FACS) 用于多学科研究和教育
- 批准号:
2117625 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Bioengineering thymus organoids towards generation of humanized mice models
合作研究:通过生物工程胸腺类器官来生成人源化小鼠模型
- 批准号:
1803781 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
MRI: Acquisition of a High Resolution Atomic Force Microscope for Interdisciplinary Nanoscience Research and Education at Fordham University
MRI:福特汉姆大学购买高分辨率原子力显微镜用于跨学科纳米科学研究和教育
- 批准号:
1626378 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Biomanufacturing: Engineered hydrogel capsules for controlled scalable cultures of pluripotent stem cells
EAGER:生物制造:用于多能干细胞可控可扩展培养的工程水凝胶胶囊
- 批准号:
1547618 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Systems Analysis of Signaling Pathway towards Robust Differentiation
EAGER:实现稳健分化的信号通路系统分析
- 批准号:
1455800 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Standard: Enhancing Internships with Professional Ethics Training: Cultivating an Ethical Engineer Identity
合作研究:标准:通过职业道德培训加强实习:培养道德工程师身份
- 批准号:
2309377 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Standard: Enhancing Internships with Professional Ethics Training: Cultivating an Ethical Engineer Identity
合作研究:标准:通过职业道德培训加强实习:培养道德工程师身份
- 批准号:
1926213 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Standard: Enhancing Internships with Professional Ethics Training: Cultivating an Ethical Engineer Identity
合作研究:标准:通过职业道德培训加强实习:培养道德工程师身份
- 批准号:
1926203 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Engineer a functional 3D vascularized islet organoid from pluripotent stem cells
合作研究:利用多能干细胞设计功能性 3D 血管化胰岛类器官
- 批准号:
1842675 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Engineer a functional 3D vascularized islet organoid from pluripotent stem cells
合作研究:利用多能干细胞设计功能性 3D 血管化胰岛类器官
- 批准号:
1706742 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Engineer a functional 3D vascularized islet organoid from pluripotent stem cells
合作研究:利用多能干细胞设计功能性 3D 血管化胰岛类器官
- 批准号:
1706268 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: "I AM an engineer!" Assessing Engineering Identity, Its Development, and Its Contribution to Retention among Engineering College Students
合作研究:“我是一名工程师!”
- 批准号:
1504941 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Changes in ecosystem production and benthic biodiversity following the widespread loss of an ecosystem engineer
合作研究:生态系统工程师广泛流失后生态系统生产和底栖生物多样性的变化
- 批准号:
1435194 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CC*DNI Engineer: CI Engineer to Enhance Collaborative Research
CC*DNI 工程师:CI 工程师加强协作研究
- 批准号:
1541437 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Changes in ecosystem production and benthic biodiversity following the widespread loss of an ecosystem engineer
合作研究:生态系统工程师广泛流失后生态系统生产和底栖生物多样性的变化
- 批准号:
1435205 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant