Controlling Magnets and Electrons Using Spin-Orbit Interactions
利用自旋轨道相互作用控制磁体和电子
基本信息
- 批准号:1708499
- 负责人:
- 金额:$ 56.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical Abstract:Magnetic memory devices that store information based on the orientation of the north and south magnetic poles of a tiny magnetic layer are an attractive alternative for replacing silicon-based random access memories for many applications. Magnetic memories have the advantages: they retain information even with the electrical power turned off and they never wear out. At the same time they can be made very dense, fast, and inexpensive. The remaining challenge standing in the way of widespread application of magnetic memories is to reduce the electrical energy required to write their information. This project is investigating physics questions related to solving this challenge. The research team is focusing on promising new physical effects that emerge when a thin layer of magnetic material is coupled to a second material containing heavy atoms such as tungsten or tantalum so that it possesses what is known as strong spin-orbit interactions. The team is studying materials and device geometries that enable these spin-orbit interactions to drive magnetic switching with record-low values of applied energy. They are also investigating related effects of how interaction with a magnetic layer can affect the electrical properties of the material with strong spin-orbit interactions. This project contributes to the development of high-performance magnetic memory and logic, the education of graduate students and undergraduates involved in the research, and participation in outreach activities focused on a partnership with 4-H.Technical Abstract:This project is investigating new physics phenomena that emerge when a thin layer of magnetic material is coupled to thin layer of a material with strong spin-orbit interactions. The research team is examining both the effects of the spin-orbit coupling on the magnetic layer, and the effect of magnetic interactions on electrons inside the material with strong spin-orbit coupling. This research builds, in part, on recent discoveries by the principal investigator and collaborators concerning current-generated "spin-orbit torques" that can be used to manipulate very efficiently the magnetization direction of magnetic memory devices, and it seeks to answer several of the most important unresolved questions in this field: (1) Is there a practical way to use broken symmetries to reorient spin-orbit torques into the direction most desired for applications? (2) Can the scattering of spin-polarized electrons from an interface with strong spin-orbit coupling generate spin-orbit torques via mechanisms that are not yet understood? (3) Can the large spin and orbital moments present in some f-electron elements be used to enhance spin-orbit torques? The project is also exploring other new scientific opportunities enabled by interfacial interactions between magnetism with spin-orbit materials, to better control both the properties of the magnetic film (e.g., magnetic damping, Dzyaloshinskii-Moriya interactions, magnetic anisotropy) and the spin and valley dynamics of electrons within the spin-orbit material (e.g., magnetic control of optical properties, valley Hall effect, valley ferromagnetism, and superconductivity).
非技术摘要:基于微小磁性层的北磁极和南磁极的方向存储信息的磁性存储器设备是用于许多应用的替代硅基随机存取存储器的有吸引力的选择。 磁性存储器有优点:即使在电源关闭的情况下,它们也能保留信息,而且永远不会磨损。同时,它们可以被制造得非常致密、快速和廉价。 阻碍磁存储器广泛应用的剩余挑战是减少写入其信息所需的电能。该项目正在研究与解决这一挑战有关的物理问题。 该研究小组专注于有希望的新物理效应,当磁性材料薄层与含有钨或钽等重原子的第二种材料耦合时,这种效应就会出现,从而使其具有所谓的强自旋轨道相互作用。 该团队正在研究材料和器件几何形状,使这些自旋轨道相互作用能够以创纪录的低应用能量值驱动磁开关。 他们还在研究与磁性层的相互作用如何影响具有强自旋轨道相互作用的材料的电学性质的相关效应。 该项目有助于高性能磁存储器和逻辑的发展,参与研究的研究生和本科生的教育,并参与外展活动,重点是与4-H.技术摘要:该项目正在研究新的物理现象时出现的磁性材料的薄层耦合到具有强自旋轨道相互作用的材料的薄层。 研究小组正在研究自旋轨道耦合对磁性层的影响,以及磁相互作用对具有强自旋轨道耦合的材料内部电子的影响。这项研究部分建立在主要研究者和合作者最近发现的关于电流产生的“自旋轨道转矩”的基础上,该转矩可用于非常有效地操纵磁存储设备的磁化方向,并试图回答该领域中几个最重要的未解决问题:(1)是否有一种实用的方法,可以利用对称性的破缺,将自旋-轨道力矩重新定向到最适合应用的方向?(2)自旋极化电子从强自旋-轨道耦合界面的散射能否通过尚不清楚的机制产生自旋-轨道力矩?(3)在某些f-电子元素中存在的大的自旋和轨道矩能用来增强自旋-轨道矩吗? 该项目还在探索其他新的科学机会,这些机会是由磁性与自旋轨道材料之间的界面相互作用实现的,以更好地控制磁性薄膜的性质(例如,磁阻尼、Dzyaloshinskiii-Moriya相互作用、磁各向异性)以及自旋-轨道材料内的电子的自旋和谷动力学(例如,光学性质的磁性控制、谷霍尔效应、谷铁磁性和超导性)。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Berry curvature, semiclassical electron dynamics, and topological materials: Lecture notes for Introduction to Solid State Physics
- DOI:
- 发表时间:2020-01
- 期刊:
- 影响因子:0
- 作者:D. Ralph
- 通讯作者:D. Ralph
Controlling spin current polarization through non-collinear antiferromagnetism
- DOI:10.1038/s41467-020-17999-4
- 发表时间:2020-09-16
- 期刊:
- 影响因子:16.6
- 作者:Nan, T.;Quintela, C. X.;Eom, C. B.
- 通讯作者:Eom, C. B.
Resonant Measurement of Nonreorientable Spin-Orbit Torque from a Ferromagnetic Source Layer Accounting for Dynamic Spin Pumping
- DOI:10.1103/physrevapplied.16.024035
- 发表时间:2021-06
- 期刊:
- 影响因子:4.6
- 作者:Joseph A. Mittelstaedt;D. Ralph
- 通讯作者:Joseph A. Mittelstaedt;D. Ralph
Transverse and Longitudinal Spin-Torque Ferromagnetic Resonance for Improved Measurement of Spin-Orbit Torque
- DOI:10.1103/physrevapplied.14.024024
- 发表时间:2020-08-11
- 期刊:
- 影响因子:4.6
- 作者:Karimeddiny, Saba;Mittelstaedt, Joseph A.;Ralph, Daniel C.
- 通讯作者:Ralph, Daniel C.
Reorientable Spin Direction for Spin Current Produced by the Anomalous Hall Effect
- DOI:10.1103/physrevapplied.9.064033
- 发表时间:2018-06-20
- 期刊:
- 影响因子:4.6
- 作者:Gibbons, Jonathan D.;MacNeill, David;Ralph, Daniel C.
- 通讯作者:Ralph, Daniel C.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Ralph其他文献
Sensitivity analysis of composite piecewise smooth equations
- DOI:
10.1007/bf02614400 - 发表时间:
1997-03-01 - 期刊:
- 影响因子:2.500
- 作者:
Daniel Ralph;Stefan Scholtes - 通讯作者:
Stefan Scholtes
The Scenario Culture
情景文化
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
E. Wheatcroft;H. Wynn;C. Dent;Jim Q. Smith;Clare Copeland;Daniel Ralph;S. Zachary - 通讯作者:
S. Zachary
Foreword: Special issue on nonlinear programming, variational inequalities, and stochastic programming
- DOI:
10.1007/s10107-007-0169-6 - 发表时间:
2007-08-08 - 期刊:
- 影响因子:2.500
- 作者:
Jong-Shi Pangc;Daniel Ralph - 通讯作者:
Daniel Ralph
A geometrical insight on pseudoconvexity and pseudomonotonicity
- DOI:
10.1007/s10107-009-0324-3 - 发表时间:
2009-11-10 - 期刊:
- 影响因子:2.500
- 作者:
Jean-Pierre Crouzeix;Andrew Eberhard;Daniel Ralph - 通讯作者:
Daniel Ralph
(Convex) Level Sets Integration
- DOI:
10.1007/s10957-015-0795-8 - 发表时间:
2015-08-12 - 期刊:
- 影响因子:1.500
- 作者:
Jean-Pierre Crouzeix;Andrew Eberhard;Daniel Ralph - 通讯作者:
Daniel Ralph
Daniel Ralph的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Ralph', 18)}}的其他基金
Uncovering the Missing Physics in the Metrology of Spin-Orbit Torques
揭示自旋轨道扭矩计量中缺失的物理现象
- 批准号:
2104268 - 财政年份:2021
- 资助金额:
$ 56.06万 - 项目类别:
Continuing Grant
Spin Transfer Torques Arising from Spin-Orbit Interactions
自旋轨道相互作用产生的自旋转移扭矩
- 批准号:
1406333 - 财政年份:2014
- 资助金额:
$ 56.06万 - 项目类别:
Standard Grant
IRES-International Research Experience in Nanotechnology-NNIN and NIMS 2010
IRES-国际纳米技术研究经验-NNIN 和 NIMS 2010
- 批准号:
1030533 - 财政年份:2010
- 资助金额:
$ 56.06万 - 项目类别:
Continuing Grant
Current - Induced Torques in Ferromagnetic and Antiferromagnetic Structures
铁磁和反铁磁结构中的电流感应扭矩
- 批准号:
1010768 - 财政年份:2010
- 资助金额:
$ 56.06万 - 项目类别:
Continuing Grant
Steady-State and Dynamical Measurements of Spin-Dependent Tunneling via Discrete Quantum States
通过离散量子态对自旋相关隧道进行稳态和动态测量
- 批准号:
0605742 - 财政年份:2006
- 资助金额:
$ 56.06万 - 项目类别:
Continuing grant
NNIN: National Nanotechnology Infrastructure Network
NNIN:国家纳米技术基础设施网络
- 批准号:
0335765 - 财政年份:2004
- 资助金额:
$ 56.06万 - 项目类别:
Cooperative Agreement
Electron Transport in Nanostructures and Single Molecules
纳米结构和单分子中的电子传输
- 批准号:
0244713 - 财政年份:2003
- 资助金额:
$ 56.06万 - 项目类别:
Continuing grant
Acquisition of a Scanned-Probe Microscope System for Research and Education
采购用于研究和教育的扫描探针显微镜系统
- 批准号:
0216772 - 财政年份:2002
- 资助金额:
$ 56.06万 - 项目类别:
Standard Grant
Tunneling Spectroscopy of Electron-in-a-Box Energy Levels in Metal Nanoparticles
金属纳米颗粒中电子盒能级的隧道光谱
- 批准号:
0071631 - 财政年份:2000
- 资助金额:
$ 56.06万 - 项目类别:
Standard Grant
Fabrication of Nanometer-Scale Sensors on Scanning-Probe Microscope Tips
扫描探针显微镜尖端纳米级传感器的制造
- 批准号:
0080393 - 财政年份:2000
- 资助金额:
$ 56.06万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327826 - 财政年份:2024
- 资助金额:
$ 56.06万 - 项目类别:
Continuing Grant
Electronic, transport and topological properties of frustrated magnets
受挫磁体的电子、输运和拓扑特性
- 批准号:
2403804 - 财政年份:2024
- 资助金额:
$ 56.06万 - 项目类别:
Standard Grant
CAREER: Design and synthesis of functional van der Waals magnets
职业:功能性范德华磁体的设计与合成
- 批准号:
2338229 - 财政年份:2024
- 资助金额:
$ 56.06万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327827 - 财政年份:2024
- 资助金额:
$ 56.06万 - 项目类别:
Continuing Grant
Development of high-performance SmFe12-based sintered magnets using a unique combinatorial approach
使用独特的组合方法开发高性能 SmFe12 基烧结磁体
- 批准号:
23K26368 - 财政年份:2024
- 资助金额:
$ 56.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Design Strategies for High-Performance Bismuth- and Lanthanide-Based Single-Molecule Magnets
职业:高性能铋基和镧系单分子磁体的设计策略
- 批准号:
2339595 - 财政年份:2024
- 资助金额:
$ 56.06万 - 项目类别:
Continuing Grant
A Coordination Chemistry Approach to the Synthesis of Single-Molecule Magnets
合成单分子磁体的配位化学方法
- 批准号:
2350466 - 财政年份:2024
- 资助金额:
$ 56.06万 - 项目类别:
Continuing Grant
Two-Dimensional Magnets in Spintronic Devices: Roles of Spin Fluctuations
自旋电子器件中的二维磁体:自旋涨落的作用
- 批准号:
2401267 - 财政年份:2024
- 资助金额:
$ 56.06万 - 项目类别:
Standard Grant
Enabling L10 Ordering in Bulk FeNi Alloys and an Alternative for Nd2Fe14B- Based Permanent Magnets
实现散装 FeNi 合金的 L10 订购以及基于 Nd2Fe14B 的永磁体的替代品
- 批准号:
2400480 - 财政年份:2024
- 资助金额:
$ 56.06万 - 项目类别:
Standard Grant
Molecular Multiferroics, Quantum Magnets, and Spin Qubits under External Stimuli
外部刺激下的分子多铁性、量子磁体和自旋量子位
- 批准号:
2342425 - 财政年份:2024
- 资助金额:
$ 56.06万 - 项目类别:
Standard Grant