RUI: Calculus of Functors and Applications in Homotopy Theory

RUI:函子微积分及其在同伦理论中的应用

基本信息

  • 批准号:
    1709032
  • 负责人:
  • 金额:
    $ 14.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-15 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

This project is in the field of topology, which studies the fundamental nature of high-dimensional shapes and the relationships between them. While formerly one of the most abstract areas of mathematics, the usefulness of topology is starting to be recognized in areas such as data analysis and neuroscience where high-dimensional structures have been discovered in a variety of unexpected places. This particular project concerns the ways that different shapes can be related to one another, and applies some of the ideas and intuition of calculus to the study of these connections. Calculus (as taught to undergraduates across the country) is fundamentally about approximation. In this project the PI will study how complicated shapes can be approximated in a useful way by those that are simpler and easier to work with. A systematic understanding of these approximations will help us describe the structure of some of the new shapes that are appearing in modern applications of topology.More technically, the focus of this project is the calculus of homotopy functors developed by Goodwillie. The underlying idea is to approximate an object of interest (say the value of some functor) using other simpler functors that satisfy a polynomial condition. A major component of this project is to understand, in various different situations, how the analogue of the Taylor series (a "Taylor tower" in topology) can be assembled from its components. From this general theory this project aims at several avenues of application. One is to the calculation of the Taylor towers corresponding to various versions of algebraic K-theory, viewed as functors from ring spectra to spectra. Another is to chromatic homotopy theory, specifically to study of the Bousfield-Kuhn functor, and to algebraic K-theory in a K(n)-local setting. This project will also support the PI's efforts to promote mathematics and math education at Amherst College. The PI is engaged with the training of preservice math teachers and has jointly designed and taught a new course on inequality in K-12 math education, expanding the College's support for education studies, and increasing collaboration between mathematics and other academic departments at Amherst.
该项目属于拓扑学领域,研究高维形状的基本性质以及它们之间的关系。虽然以前是数学中最抽象的领域之一,但拓扑学的有用性开始在数据分析和神经科学等领域得到认可,这些领域在各种意想不到的地方发现了高维结构。这个特别的项目关注的是不同形状之间的联系,并将微积分的一些想法和直觉应用到这些联系的研究中。微积分(在全国范围内教授给本科生)基本上是关于近似的。在这个项目中,PI将研究如何用更简单、更容易处理的方法来近似复杂的形状。对这些近似的系统理解将帮助我们描述现代拓扑应用中出现的一些新形状的结构。更技术性地说,这个项目的重点是古德威利开发的同伦函子演算。其基本思想是使用其他满足多项式条件的简单函子来近似感兴趣的对象(例如某个函子的值)。该项目的一个主要组成部分是了解,在各种不同的情况下,如何模拟泰勒级数(拓扑学中的“泰勒塔”)可以从其组件组装。从这一一般理论出发,本项目的目标是几种应用途径。一个是计算泰勒塔对应的各种版本的代数K理论,视为函子从环谱谱。另一个是色同伦理论,特别是对Bousfield-Kuhn函子的研究,以及在K(n)-局部设置下的代数K-理论。 该项目还将支持PI促进阿默斯特学院数学和数学教育的努力。PI参与了业余数学教师的培训,并共同设计和教授了一门关于K-12数学教育不平等的新课程,扩大了学院对教育研究的支持,并增加了数学与阿默斯特其他学术部门之间的合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Ching其他文献

Bar–cobar duality for operads in stable homotopy theory
稳定同伦理论中操作数的 Bar-cobar 对偶性
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Ching
  • 通讯作者:
    Michael Ching
Bar constructions for topological operads and the Goodwillie derivatives of the identity
拓扑运算的条形结构和恒等式的 Goodwillie 导数
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Ching
  • 通讯作者:
    Michael Ching
Preoperative photography improves patient satisfaction following hallux valgus surgery.
术前摄影可提高拇外翻手术后患者的满意度。
Goodwillie calculus
商誉演算
  • DOI:
    10.1201/9781351251624-1
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Arone;Michael Ching
  • 通讯作者:
    Michael Ching
Coalgebraic models for combinatorial model categories
组合模型类别的代数模型
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Ching;E. Riehl
  • 通讯作者:
    E. Riehl

Michael Ching的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Ching', 18)}}的其他基金

RUI: Koszul duality of operads and the calculus of functors
RUI:操作数的 Koszul 对偶性和函子的微积分
  • 批准号:
    1308933
  • 财政年份:
    2013
  • 资助金额:
    $ 14.44万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: The Calculus of Functors and the Theory of Operads: Interactions and Applications
FRG:协作研究:函子微积分和操作理论:交互和应用
  • 批准号:
    1144149
  • 财政年份:
    2011
  • 资助金额:
    $ 14.44万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: The Calculus of Functors and the Theory of Operads: Interactions and Applications
FRG:协作研究:函子微积分和操作理论:交互和应用
  • 批准号:
    0968221
  • 财政年份:
    2010
  • 资助金额:
    $ 14.44万
  • 项目类别:
    Standard Grant

相似海外基金

RUI: Koszul duality of operads and the calculus of functors
RUI:操作数的 Koszul 对偶性和函子的微积分
  • 批准号:
    1308933
  • 财政年份:
    2013
  • 资助金额:
    $ 14.44万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: The Calculus of Functors and the Theory of Operads: Interactions and Applications
FRG:协作研究:函子微积分和操作理论:交互和应用
  • 批准号:
    1144149
  • 财政年份:
    2011
  • 资助金额:
    $ 14.44万
  • 项目类别:
    Standard Grant
Topology of the embedding spaces via configuration space integrals, operads and the calculus of functors
通过配置空间积分、操作数和函子微积分实现嵌入空间的拓扑
  • 批准号:
    23840015
  • 财政年份:
    2011
  • 资助金额:
    $ 14.44万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
FRG: Collaborative Research: The Calculus of Functors and the Theory of Operads: Interactions and Applications
FRG:协作研究:函子微积分和操作理论:交互和应用
  • 批准号:
    0967649
  • 财政年份:
    2010
  • 资助金额:
    $ 14.44万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: The Calculus of Functors and the Theory of Operads: Interactions and Applications
FRG:协作研究:函子微积分和操作理论:交互和应用
  • 批准号:
    0968251
  • 财政年份:
    2010
  • 资助金额:
    $ 14.44万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: The Calculus of Functors and the Theory of Operads: Interactions and Applications
FRG:协作研究:函子微积分和操作理论:交互和应用
  • 批准号:
    0967061
  • 财政年份:
    2010
  • 资助金额:
    $ 14.44万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: The Calculus of Functors and the Theory of Operads: Interactions and Applications
FRG:协作研究:函子微积分和操作理论:交互和应用
  • 批准号:
    0968046
  • 财政年份:
    2010
  • 资助金额:
    $ 14.44万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: The Calculus of Functors and the Theory of Operads: Interactions and Applications
FRG:协作研究:函子微积分和操作理论:交互和应用
  • 批准号:
    0968221
  • 财政年份:
    2010
  • 资助金额:
    $ 14.44万
  • 项目类别:
    Standard Grant
RUI: Embedding spaces via calculus of functors and generalizations of finite type invariants
RUI:通过函子演算和有限类型不变量的推广来嵌入空间
  • 批准号:
    0805406
  • 财政年份:
    2008
  • 资助金额:
    $ 14.44万
  • 项目类别:
    Standard Grant
Manifolds and calculus of functors
函子的流形和微积分
  • 批准号:
    0708601
  • 财政年份:
    2007
  • 资助金额:
    $ 14.44万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了