Dehn Surgery, Four-Manifolds, and Symplectic Topology

Dehn 手术、四流形和辛拓扑

基本信息

  • 批准号:
    1709702
  • 负责人:
  • 金额:
    $ 18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Topology is an area of mathematics that studies the intrinsic shapes of objects, such as a hula hoop, a massive data set, our universe, or a strand of DNA. For example, topology can be used to measure how biological processes change the shape of our DNA. Surprisingly, these shape changes can be analyzed through three- and four-dimensional manifolds, fundamental shapes in topology that appear throughout mathematics and physics. This leads to the fundamental problem of trying to completely understand and classify these three- and four-dimensional manifolds. While we understand many aspects of three-dimensional objects, in dimension four we are still mostly in the dark. One effective tool for studying these objects is called Floer homology, which comes from solving powerful equations from physics. In this project, the PI will use Floer homology to study the complexity of these shapes by analyzing the configurations of knotted loops and surfaces inside of them. The potential outcome of this project will be to strengthen connections between knots and three-/four-dimensional manifolds while discovering new structure in the topology of four-dimensional manifolds. This project will then be disseminated to the public through a collaboration with Black Box Dance Theater, a North Carolina non-profit dance company. By way of dance performances and public workshops, this will present to the public the fundamental notions of topology used in the proposed project. This joint project will also work to improve public perception of mathematics and enhance connections between STEM and the arts.Knots can be used to produce new three- and four-manifolds by an operation called Dehn surgery, where one removes a tubular neighborhood and reglues via a homeomorphism. Many invariants and tools in low-dimensional topology, especially Floer homology, are particularly well-behaved under Dehn surgery, and the PI will use these tools to improve our understanding of three- and four-manifolds and further their connections with knot theory. Three major goals of this project are to: 1) construct homology three-spheres which cannot be obtained by Dehn surgery on a two-component link, 2) find new constraints on the algebraic topology of four-manifolds admitting symplectic structures, and 3) further explore the algebraic structure of the concordance group of knots in homology spheres modulo concordance in homology cobordisms. Two potential outcomes would be a better understanding of the complexity of four-manifolds with boundary measured in terms of their handlebody structures and a stronger connection between properties of a knot and the topology of its Dehn surgeries.
拓扑学是数学的一个领域,它研究物体的内在形状,例如呼拉圈,大量数据集,我们的宇宙或DNA链。 例如,拓扑学可以用来测量生物过程如何改变我们DNA的形状。 令人惊讶的是,这些形状的变化可以通过三维和四维流形来分析,这些流形是拓扑学中的基本形状,出现在数学和物理学中。 这导致了试图完全理解和分类这些三维和四维流形的基本问题。 虽然我们了解三维物体的许多方面,但在四维中,我们仍然处于黑暗之中。 研究这些物体的一个有效工具是Floer同源性,它来自于求解物理学中的强大方程。 在这个项目中,PI将使用Floer同源性来研究这些形状的复杂性,通过分析打结环和它们内部的表面的配置。 该项目的潜在成果将是加强结和三维/四维流形之间的联系,同时发现四维流形拓扑中的新结构。 该项目随后将通过与北卡罗来纳州一家非营利舞蹈公司黑盒舞蹈剧院的合作向公众传播。 通过舞蹈表演和公共研讨会,这将向公众展示拟议项目中使用的拓扑学的基本概念。 这个联合项目还将致力于提高公众对数学的认知,加强STEM和艺术之间的联系。通过一种称为Dehn手术的操作,可以使用结来产生新的三维和四维流形,其中一个通过同胚去除管状邻域并重新调整。 低维拓扑中的许多不变量和工具,特别是Floer同调,在Dehn手术下表现得特别好,PI将使用这些工具来提高我们对三维和四维流形的理解,并进一步将它们与纽结理论联系起来。 本项目的主要目标是:1)构造不能通过Dehn外科手术在二分量连杆上获得的同调三球面; 2)发现允许辛结构的四流形的代数拓扑的新约束; 3)进一步探索同调球面中纽结协调群的代数结构。 两个潜在的结果将是更好地理解四流形的复杂性,其边界是根据其体结构来测量的,以及结的属性与其Dehn手术的拓扑结构之间的更强联系。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Distance one lens space fillings and band surgery on the trefoil knot
  • DOI:
    10.2140/agt.2019.19.2439
  • 发表时间:
    2017-10
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Tye Lidman;Allison H. Moore;M. Vázquez
  • 通讯作者:
    Tye Lidman;Allison H. Moore;M. Vázquez
SIMPLY CONNECTED, SPINELESS 4-MANIFOLDS
简单连接、无骨架 4 歧管
  • DOI:
    10.1017/fms.2019.11
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    LEVINE, ADAM SIMON;LIDMAN, TYE
  • 通讯作者:
    LIDMAN, TYE
Lagrangian Cobordisms and Legendrian Invariants in Knot Floer Homology
结花同调中的拉格朗日配边和勒让德不变量
  • DOI:
    10.1307/mmj/20195786
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Baldwin, John A.;Lidman, Tye;Wong, C.-M. Michael
  • 通讯作者:
    Wong, C.-M. Michael
APPLICATIONS OF INVOLUTIVE HEEGAARD FLOER HOMOLOGY
内卷Heegarard FLOER同源性的应用
Khovanov homology detects the figure‐eight knot
霍瓦诺夫同源性检测数字——八结
  • DOI:
    10.1112/blms.12467
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Baldwin, John A.;Dowlin, Nathan;Levine, Adam Simon;Lidman, Tye;Sazdanovic, Radmila
  • 通讯作者:
    Sazdanovic, Radmila
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tye Lidman其他文献

Pretzel knots with L-space surgeries
L 空间手术的椒盐卷饼结
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tye Lidman;Allison H. Moore
  • 通讯作者:
    Allison H. Moore
Quasi-alternating links with small determinant
具有小行列式的准交替链接
On the Infinity Flavor of Heegaard Floer Homology and the Integral Cohomology Ring
论Heegaard Floer同调与积分上同调环的无穷风味
  • DOI:
    10.4171/cmh/306
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tye Lidman
  • 通讯作者:
    Tye Lidman
Framed Floer Homology
框架花同源性
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tye Lidman
  • 通讯作者:
    Tye Lidman
Corrigendum to “Taut Foliations, Left-Orderability, and Cyclic Branched Covers”
“拉紧的叶状结构、左序性和循环分支覆盖层”的勘误表
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Gordon;Tye Lidman
  • 通讯作者:
    Tye Lidman

Tye Lidman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tye Lidman', 18)}}的其他基金

Lagrangians and Low-Dimensional Topology
拉格朗日和低维拓扑
  • 批准号:
    2105469
  • 财政年份:
    2021
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant

相似海外基金

Stage IV胃癌に対するconversion surgeryにおける化学療法の奏効度とctDNAの関連
IV期胃癌转化手术化疗疗效与ctDNA的关系
  • 批准号:
    24K19353
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
MRI-based, patient-specific 3D bone imaging for orthopaedic surgery planning
基于 MRI 的患者特异性 3D 骨成像,用于骨科手术规划
  • 批准号:
    10106117
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Launchpad
Revolutionising Surgery Scheduling: an innovative AI-powered health-tech platform enhancing Operating Room efficiency, with an automated schedule unlocking the potential for an additional 10% or 350K surgeries annually in the UK.
彻底改变%20手术%20调度:%20an%20创新%20AI驱动%20健康科技%20平台%20增强%20操作%20房间%20效率,%20与%20an%20自动化%20调度%20解锁%20%20潜力%20用于%20an%20额外%
  • 批准号:
    10095646
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Collaborative R&D
肝臓color coded surgery実現のための、近赤外光とAIによる次世代術中観察技術の開発
开发利用近红外光和人工智能的下一代术中观察技术,实现肝脏彩色编码手术
  • 批准号:
    24K19407
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Using Novel Machine Learning Methods to Personalize Strategies for Prevention of Persistent AKI after Cardiac Surgery
使用新颖的机器学习方法制定个性化策略,预防心脏手术后持续性 AKI
  • 批准号:
    10979324
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
Gut-brain axisからみたMetabolic surgeryの血糖抑制効果
肠脑轴视角下代谢手术的血糖控制效果
  • 批准号:
    24K11741
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ZeptoTrack - Miniature Optical Tracking System for Robotic Surgery and Surgical Navigation
ZeptoTrack - 用于机器人手术和手术导航的微型光学跟踪系统
  • 批准号:
    10061083
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Collaborative R&D
Prevention of Infections in Cardiac Surgery (PICS): a cluster-randomized factorial cross-over trial
心脏手术中感染的预防 (PICS):整群随机因子交叉试验
  • 批准号:
    498291
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Operating Grants
A voice to the voiceless: Longitudinal patient-reported outcomes, experiences, social determinants of health and health services utilization after major neonatal surgery
向无声者发出声音:重大新生儿手术后患者纵向报告的结果、经历、健康和卫生服务利用的社会决定因素
  • 批准号:
    478053
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Operating Grants
Real-time molecular-imaging guidance of breast conserving surgery
实时分子影像指导保乳手术
  • 批准号:
    478297
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了