Dehn Surgery, Four-Manifolds, and Symplectic Topology
Dehn 手术、四流形和辛拓扑
基本信息
- 批准号:1709702
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Topology is an area of mathematics that studies the intrinsic shapes of objects, such as a hula hoop, a massive data set, our universe, or a strand of DNA. For example, topology can be used to measure how biological processes change the shape of our DNA. Surprisingly, these shape changes can be analyzed through three- and four-dimensional manifolds, fundamental shapes in topology that appear throughout mathematics and physics. This leads to the fundamental problem of trying to completely understand and classify these three- and four-dimensional manifolds. While we understand many aspects of three-dimensional objects, in dimension four we are still mostly in the dark. One effective tool for studying these objects is called Floer homology, which comes from solving powerful equations from physics. In this project, the PI will use Floer homology to study the complexity of these shapes by analyzing the configurations of knotted loops and surfaces inside of them. The potential outcome of this project will be to strengthen connections between knots and three-/four-dimensional manifolds while discovering new structure in the topology of four-dimensional manifolds. This project will then be disseminated to the public through a collaboration with Black Box Dance Theater, a North Carolina non-profit dance company. By way of dance performances and public workshops, this will present to the public the fundamental notions of topology used in the proposed project. This joint project will also work to improve public perception of mathematics and enhance connections between STEM and the arts.Knots can be used to produce new three- and four-manifolds by an operation called Dehn surgery, where one removes a tubular neighborhood and reglues via a homeomorphism. Many invariants and tools in low-dimensional topology, especially Floer homology, are particularly well-behaved under Dehn surgery, and the PI will use these tools to improve our understanding of three- and four-manifolds and further their connections with knot theory. Three major goals of this project are to: 1) construct homology three-spheres which cannot be obtained by Dehn surgery on a two-component link, 2) find new constraints on the algebraic topology of four-manifolds admitting symplectic structures, and 3) further explore the algebraic structure of the concordance group of knots in homology spheres modulo concordance in homology cobordisms. Two potential outcomes would be a better understanding of the complexity of four-manifolds with boundary measured in terms of their handlebody structures and a stronger connection between properties of a knot and the topology of its Dehn surgeries.
拓扑是数学领域,研究对象的内在形状,例如呼啦圈,大量数据集,我们的宇宙或一条DNA。 例如,拓扑可用于测量生物过程如何改变DNA的形状。 令人惊讶的是,这些形状变化可以通过三维和四维流形,拓扑中的基本形状来分析,这些形状出现在整个数学和物理学中。 这导致了试图完全理解和分类这些三维和四维流形的基本问题。 尽管我们了解三维对象的许多方面,但在维度四中,我们仍然大部分位于黑暗中。 研究这些对象的一种有效工具称为浮点同源性,它来自从物理学中求解强大的方程式。 在该项目中,PI将通过分析它们内部打结的环和表面的配置来研究这些形状的复杂性。 该项目的潜在结果将是加强结与三维流形之间的连接,同时在四维流形的拓扑结构中发现新结构。 然后,该项目将通过与北卡罗来纳州非营利性舞蹈公司Black Box Dance Theatre合作将其传播给公众。 通过舞蹈表演和公共研讨会,这将向公众展示拟议项目中使用的拓扑基本概念。 该联合项目还将致力于提高公众对数学的看法,并通过称为Dehn Surgery的手术来使用STEM与艺术之间的联系。开口可用于生产新的三杆和四个manifolds,在该手术中,人们可以通过同音形态去除管状邻居并进行恢复。 在Dehn手术下,许多低维拓扑的不变性和工具尤其是表现出色,并且PI将使用这些工具来提高我们对三个和四个manifolds的理解,并进一步与结理论联系。 Three major goals of this project are to: 1) construct homology three-spheres which cannot be obtained by Dehn surgery on a two-component link, 2) find new constraints on the algebraic topology of four-manifolds admitting symplectic structures, and 3) further explore the algebraic structure of the concordance group of knots in homology spheres modulo concordance in homology cobordisms. 两个潜在的结果将更好地理解四个manifolds与其手柄结构测量的边界的复杂性,并在结的特性与其Dehn手术的拓扑之间建立更强的联系。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Distance one lens space fillings and band surgery on the trefoil knot
- DOI:10.2140/agt.2019.19.2439
- 发表时间:2017-10
- 期刊:
- 影响因子:0.7
- 作者:Tye Lidman;Allison H. Moore;M. Vázquez
- 通讯作者:Tye Lidman;Allison H. Moore;M. Vázquez
SIMPLY CONNECTED, SPINELESS 4-MANIFOLDS
简单连接、无骨架 4 歧管
- DOI:10.1017/fms.2019.11
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:LEVINE, ADAM SIMON;LIDMAN, TYE
- 通讯作者:LIDMAN, TYE
Lagrangian Cobordisms and Legendrian Invariants in Knot Floer Homology
结花同调中的拉格朗日配边和勒让德不变量
- DOI:10.1307/mmj/20195786
- 发表时间:2021
- 期刊:
- 影响因子:0.9
- 作者:Baldwin, John A.;Lidman, Tye;Wong, C.-M. Michael
- 通讯作者:Wong, C.-M. Michael
APPLICATIONS OF INVOLUTIVE HEEGAARD FLOER HOMOLOGY
内卷Heegarard FLOER同源性的应用
- DOI:10.1017/s147474801900015x
- 发表时间:2019
- 期刊:
- 影响因子:0.9
- 作者:Hendricks, Kristen;Hom, Jennifer;Lidman, Tye
- 通讯作者:Lidman, Tye
Heegaard Floer homology and splicing homology spheres
Heegaard Floer 同源性和剪接同源性球
- DOI:10.4310/mrl.2021.v28.n1.a4
- 发表时间:2021
- 期刊:
- 影响因子:1
- 作者:Karakurt, Çağrı;Lidman, Tye;Tweedy, Eamonn
- 通讯作者:Tweedy, Eamonn
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tye Lidman其他文献
Pretzel knots with L-space surgeries
L 空间手术的椒盐卷饼结
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Tye Lidman;Allison H. Moore - 通讯作者:
Allison H. Moore
Quasi-alternating links with small determinant
具有小行列式的准交替链接
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0.8
- 作者:
Tye Lidman;Steven Sivek - 通讯作者:
Steven Sivek
On the Infinity Flavor of Heegaard Floer Homology and the Integral Cohomology Ring
论Heegaard Floer同调与积分上同调环的无穷风味
- DOI:
10.4171/cmh/306 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Tye Lidman - 通讯作者:
Tye Lidman
Dehn surgery and nonseparating two-spheres
Dehn 手术和不分离的两球体
- DOI:
10.2140/obs.2022.5.145 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Jennifer Hom;Tye Lidman - 通讯作者:
Tye Lidman
Tye Lidman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tye Lidman', 18)}}的其他基金
Lagrangians and Low-Dimensional Topology
拉格朗日和低维拓扑
- 批准号:
2105469 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似国自然基金
“肠—肝轴”PPARα/CYP8B1胆汁酸合成信号通路在减重手术改善糖脂代谢中的作用与机制
- 批准号:82370902
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
GLP-1/GLP-1R调控杏仁核参与食物渴求改善减重术后复胖的神经机制研究
- 批准号:82370901
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
短肽自组装构筑可注射温敏荧光水凝胶及在肿瘤电外科手术中的应用
- 批准号:22307117
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
虚拟外科手术中三维MR影像的软组织变形场测量关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
虚拟外科手术中三维MR影像的软组织变形场测量关键技术研究
- 批准号:62202345
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
4D Multimodal Image-Based Modeling for Bicuspid Aortic Valve Repair Surgery
二叶式主动脉瓣修复手术的 4D 多模态基于图像的建模
- 批准号:
10420584 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
4D Multimodal Image-Based Modeling for Bicuspid Aortic Valve Repair Surgery
二叶式主动脉瓣修复手术的 4D 多模态基于图像的建模
- 批准号:
10608141 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Quantitative ASL MR angiography and perfusion imaging for cerebral revascularization
用于脑血运重建的定量 ASL MR 血管造影和灌注成像
- 批准号:
10646178 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Diversification of cell types during male and female external genital development
男性和女性外生殖器发育过程中细胞类型的多样化
- 批准号:
10365645 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Four-Factor Prothrombin Complex Concentrate Versus Frozen Plasma in Bleeding Adult Cardiac Surgical Patients: A multicentre randomized controlled trial
四因子凝血酶原复合物浓缩物与冷冻血浆在成人心脏手术出血患者中的作用:一项多中心随机对照试验
- 批准号:
445439 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Operating Grants