Collaborative Research: Information Geometry for Model Verification in Energy Systems with Renewables

合作研究:可再生能源能源系统模型验证的信息几何

基本信息

  • 批准号:
    1710727
  • 负责人:
  • 金额:
    $ 21.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Emerging communication and computation capabilities have the potential to profoundly change and improve infrastructures such as electric power systems. The architecture and composition of modern power systems have been undergoing significant changes recently. These include new sources, such as gas-fired plants and co-generation facilities, and from new loads connected through power electronic converters and tightly controlled through local communication networks. The programmable nature of new sources and loads offers new capabilities, but at the same time necessitates frequently repeated model verification. Models preferred by energy engineers are often motivated by the physical properties of components and sub-systems. These models are typically nonlinear in terms of parameters. However, reliable identification of parameters from measurements is a challenging problem that is largely unsolved for the case of nonlinear models. This project aims to deploy new model verification tools that combine profound mathematical foundations (differential geometry and information theory) with modern computational algorithms. This project will have direct implications on other branches of engineering that use similar types of models. Within energy systems, this project has the potential to result in economic, environmental, and resilience benefits by enabling more precise operation of future electricity markets and control in actual power plants and customer sites.This project builds on computational advances in differential geometry, and offers a new, global characterization of challenges frequently encountered in system identification and model reduction of energy systems. The premise of this approach is that a model with many parameters is a mapping from a parameter space into a data or prediction space. A key difficulty in dealing with models of complex systems is the highly anisotropic nature of the mapping between the parameters and data spaces, meaning that small variations in parameter space may lead to dramatic changes in the measurement (data) space while other variations in parameters can lead to no discernable change in the in the model behavior. This project will use event recordings from daily operation (e.g., from phasor measurement units following line switchings and load variations) to motivate new model validation and selection algorithms. The long-term vision is to develop global and semi-global identification procedures for nonlinearly-parametrized energy components and systems, to establish limits of performance with phasor measurement unit sensors, to develop novel model reduction procedures, and to lay the groundwork for identification of large-scale energy systems. Specific goals include: 1) parameter identification for wind and solar plants, including more detailed manifold maps; 2) parameter identification for conventional sources (synchronous generators) and loads; and 3) re-parametrization and reduction for models that are typically employed in dynamic studies. Simulations will use industry-standard and custom software and recordings of hardware experiments to quantify progress. Anticipated results will be relevant for microgrids, virtual entities (virtual utilities, energy hubs) that are often considered essential in the long-term evolution of smart grids, and future electricity markets that will likely operate on shorter time-scales and thus depend on model fidelity of system dynamics.
新兴的通信和计算能力有可能深刻改变和改善电力系统等基础设施。近些年来,现代电力系统的结构和组成都发生了重大变化。其中包括新的能源,如燃气发电厂和热电联产设施,以及通过电力电子转换器连接并通过当地通信网络严格控制的新负载。新电源和负载的可编程特性提供了新的功能,但同时也需要频繁重复的模型验证。能源工程师喜欢的模型通常是由部件和子系统的物理属性驱动的。就参数而言,这些模型通常是非线性的。然而,从测量中可靠地识别参数是一个具有挑战性的问题,对于非线性模型来说,这个问题在很大程度上是没有解决的。该项目旨在部署新的模型验证工具,将深厚的数学基础(微分几何和信息论)与现代计算算法相结合。该项目将对使用类似类型模型的其他工程学分支产生直接影响。在能源系统内,该项目有可能通过更精确地运行未来电力市场并在实际发电厂和客户现场进行控制,从而产生经济、环境和弹性效益。该项目建立在微分几何计算进展的基础上,并提供了在能源系统的系统识别和模型简化方面经常遇到的挑战的新的、全球的表征。这种方法的前提是多参数模型是从参数空间到数据或预测空间的映射。处理复杂系统模型的一个关键困难是参数和数据空间之间映射的高度各向异性,这意味着参数空间中的微小变化可能导致测量(数据)空间中的显著变化,而参数中的其他变化可能导致模型行为中没有明显的变化。该项目将使用日常运行的事件记录(例如,来自线路切换和负载变化后的相量测量单元的事件记录),以激励新的模型验证和选择算法。其长远目标是开发用于非线性参数能源组件和系统的全局和半全局辨识程序,建立相量测量单元传感器的性能极限,开发新的模型简化程序,并为大规模能源系统的辨识奠定基础。具体目标包括:1)风能和太阳能发电厂的参数识别,包括更详细的流形图;2)常规电源(同步发电机)和负载的参数识别;3)动态研究中通常采用的模型的重新参数化和简化。模拟将使用行业标准和定制软件以及硬件实验的录音来量化进展。预期的结果将与微电网、虚拟实体(虚拟公用事业、能源枢纽)相关,这些实体通常被认为是智能电网长期发展中的关键,以及未来的电力市场,它们可能在较短的时间尺度上运行,因此取决于系统动力学的模型保真度。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Simultaneous Global Identification of Dynamic and Network Parameters in Transient Stability Studies
暂态稳定性研究中动态和网络参数的同步全局识别
State Estimation Model Reduction Through the Manifold Boundary Approximation Method
通过流形边界逼近法简化状态估计模型
  • DOI:
    10.1109/tpwrs.2021.3091547
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Svenda, Vanja;Transtrum, Mark;Francis, Benjamin;Saric, Andrija;Stankovic, Aleksandar
  • 通讯作者:
    Stankovic, Aleksandar
Probabilistic Network Observability of a Hybrid Power System with Communication Irregularities
具有通信不规则性的混合电力系统的概率网络可观测性
  • DOI:
    10.1109/naps46351.2019.8999986
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Svenda, Vanja G.;Stankovic, Alex M.;Saric, Andrija T.;Transtrum, Mark K.
  • 通讯作者:
    Transtrum, Mark K.
Piecemeal Reduction of Models of Large Networks
大型网络模型的逐步缩减
  • DOI:
    10.1109/cdc45484.2021.9683471
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Francis, Benjamin L.;Transtrum, Mark K.;Saric, Andrija T.;Stankovic, Aleksandar M.
  • 通讯作者:
    Stankovic, Aleksandar M.
Integration of Physics- and Data-Driven Power System Models in Transient Analysis After Major Disturbances
  • DOI:
    10.1109/jsyst.2022.3150237
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    A. A. Sarić-A.;M. Transtrum;A. Sarić;A. Stanković
  • 通讯作者:
    A. A. Sarić-A.;M. Transtrum;A. Sarić;A. Stanković
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Transtrum其他文献

Mark Transtrum的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Transtrum', 18)}}的其他基金

Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
  • 批准号:
    2223985
  • 财政年份:
    2023
  • 资助金额:
    $ 21.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Reliable Materials Simulation based on the Knowledgebase of Interatomic Models (KIM)
协作研究:基于原子间模型知识库(KIM)的可靠材料模拟
  • 批准号:
    1834332
  • 财政年份:
    2018
  • 资助金额:
    $ 21.88万
  • 项目类别:
    Continuing Grant
CAREER: Connecting Mathematical Models Across Scales
职业:跨尺度连接数学模型
  • 批准号:
    1753357
  • 财政年份:
    2018
  • 资助金额:
    $ 21.88万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333881
  • 财政年份:
    2024
  • 资助金额:
    $ 21.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333882
  • 财政年份:
    2024
  • 资助金额:
    $ 21.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Road Information Discovery through Privacy-Preserved Collaborative Estimation in Connected Vehicles
协作研究:通过联网车辆中保护隐私的协作估计来发现道路信息
  • 批准号:
    2422579
  • 财政年份:
    2024
  • 资助金额:
    $ 21.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: Automated Quality Assurance and Quality Control for the StraboSpot Geologic Information System and Observational Data
合作研究:框架:StraboSpot 地质信息系统和观测数据的自动化质量保证和质量控制
  • 批准号:
    2311822
  • 财政年份:
    2023
  • 资助金额:
    $ 21.88万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: TTP: Medium: iDRAMA.cloud: A Platform for Measuring and Understanding Information Manipulation
协作研究:SaTC:TTP:中:iDRAMA.cloud:测量和理解信息操纵的平台
  • 批准号:
    2247867
  • 财政年份:
    2023
  • 资助金额:
    $ 21.88万
  • 项目类别:
    Continuing Grant
Collaborative Research: HNDS-R: Polarization, Information Integrity, and Diffusion
合作研究:HNDS-R:极化、信息完整性和扩散
  • 批准号:
    2242072
  • 财政年份:
    2023
  • 资助金额:
    $ 21.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: Automated Quality Assurance and Quality Control for the StraboSpot Geologic Information System and Observational Data
合作研究:框架:StraboSpot 地质信息系统和观测数据的自动化质量保证和质量控制
  • 批准号:
    2311821
  • 财政年份:
    2023
  • 资助金额:
    $ 21.88万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Information Integrity: A User-centric Intervention
协作研究:SaTC:核心:媒介:信息完整性:以用户为中心的干预
  • 批准号:
    2323795
  • 财政年份:
    2023
  • 资助金额:
    $ 21.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Visual Information about surface curvature from patterns of image shading and contours
合作研究:从图像阴影和轮廓图案中获取有关表面曲率的视觉信息
  • 批准号:
    2238180
  • 财政年份:
    2023
  • 资助金额:
    $ 21.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Visual Information about surface curvature from patterns of image shading and contours
合作研究:从图像阴影和轮廓图案中获取有关表面曲率的视觉信息
  • 批准号:
    2238179
  • 财政年份:
    2023
  • 资助金额:
    $ 21.88万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了