CCSS: Collaborative Research: Ubiquitous Sensing for VR/AR Immersive Communication: A Machine Learning Perspective

CCSS:协作研究:VR/AR 沉浸式通信的无处不在的感知:机器学习的视角

基本信息

  • 批准号:
    1711335
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Virtual and augmented reality systems comprise multi-view camera sensors that capture a scene from multiple perspectives. The captured data is then used to construct an immersive representation of the scene on the user's head mounted display. Such systems are poised to enable and enhance numerous important applications, e.g., inspection of large-scale infrastructure, archival of historical sites, search and rescue, disaster response, military reconnaissance, natural resource management, and immersive telepresence. However, due to its emerging nature, virtual/augmented reality immersive communication is presently limited to gaming or entertainment demonstrations featuring off-line captured/computer-generated content, studio-type settings, and high-end workstations to sustain its high data/computing workload. Moreover, there is little understanding of the fundamental trade-offs between the required signal acquisition density and sensor locations across space and time, the dynamics of the captured scene (motion, geometry, and textures), the available network and system resources, and the delivered immersion quality. This renders existing solutions impractical for deployment on bandwidth and energy constrained remote sensors. The project addresses these challenges via rigorous analysis and concerted algorithmic and application advances at the intersection of multi-view space-time sensing and signal representation, delay-sensitive communication, and machine learning. Education and outreach activities will immerse students in the exciting areas of visual sensing, wireless communications, and machine learning, and will engage underrepresented students spanning K-12 through undergraduate levels.The objective of this project is to efficiently capture a remote environment using multiple camera sensors with the highest possible reconstruction quality under limited sampling and communication resources. This is achieved through four interrelated research tasks: (i) analysis of optimal space-time sampling policies that determine the sensors' locations and sampling rates to minimize the remote scene's reconstruction error; (ii) design of optimal signal representation methods that embed the sampled data jointly across space and time according to the allocated sampling rates; (iii) design of online learning sampling policies based on spectral graph theory that take sampling actions while exploring new sensor locations in the absence of a priori scene viewpoint signal knowledge; and (vi) design of computationally efficient self-organizing reinforcement learning methods that allow the wireless sensors to compute optimal transmission scheduling policies that meet the low-latency requirements of the overlaying virtual/augmented reality application while conserving their available energy. Integration, experimentation, and prototyping activities will be conducted to asses and validate the research advances in real-world settings. These technical advances will enable diverse applications of transformative impact.
虚拟和增强现实系统包含多视图相机传感器,可以从多个角度捕获场景。然后使用捕获的数据在用户的头戴式显示器上构建场景的沉浸式表示。此类系统有望实现和增强许多重要的应用,例如大型基础设施的检查、历史遗址的归档、搜索和救援、灾难响应、军事侦察、自然资源管理和沉浸式远程呈现。然而,由于其新兴性质,虚拟/增强现实沉浸式通信目前仅限于以离线捕获/计算机生成内容、工作室类型设置和高端工作站为特色的游戏或娱乐演示,以维持其高数据/计算工作负载。此外,人们对所需信号采集密度和跨空间和时间的传感器位置、捕获场景的动态(运动、几何和纹理)、可用网络和系统资源以及提供的沉浸质量之间的基本权衡了解甚少。这使得现有的解决方案无法部署在带宽和能量受限的远程传感器上。该项目通过在多视图时空传感和信号表示、延迟敏感通信和机器学习的交叉点上进行严格的分析以及协调一致的算法和应用进步来应对这些挑战。教育和推广活动将使学生沉浸在视觉传感、无线通信和机器学习等令人兴奋的领域,并将吸引从 K-12 到本科阶段代表性不足的学生。该项目的目标是在有限的采样和通信资源下,使用多个摄像头传感器有效地捕获远程环境,并具有尽可能高的重建质量。这是通过四个相互关联的研究任务实现的:(i)分析最佳时空采样策略,确定传感器的位置和采样率,以最大限度地减少远程场景的重建误差; (ii) 设计最佳信号表示方法,根据分配的采样率跨空间和时间联合嵌入采样数据; (iii) 基于谱图理论设计在线学习采样策略,在缺乏先验场景视点信号知识的情况下,在探索新传感器位置的同时采取采样动作; (vi)设计计算高效的自组织强化学习方法,允许无线传感器计算最佳传输调度策略,满足覆盖虚拟/增强现实应用的低延迟要求,同时节省可用能量。将进行集成、实验和原型设计活动,以评估和验证现实环境中的研究进展。这些技术进步将使变革性影响的多样化应用成为可能。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Delay-Sensitive Energy-Harvesting Wireless Sensors: Optimal Scheduling, Structural Properties, and Approximation Analysis
延迟敏感能量收集无线传感器:最优调度、结构特性和近似分析
  • DOI:
    10.1109/tcomm.2019.2956510
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Sharma, Nikhilesh;Mastronarde, Nicholas;Chakareski, Jacob
  • 通讯作者:
    Chakareski, Jacob
Deep Reinforcement Learning for Delay-Sensitive LTE Downlink Scheduling
Improving Data-Driven Reinforcement Learning in Wireless IoT Systems Using Domain Knowledge
使用领域知识改进无线物联网系统中数据驱动的强化学习
  • DOI:
    10.1109/mcom.111.2000949
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Mastronarde, Nicholas;Sharma, Nikhilesh;Chakareski, Jacob
  • 通讯作者:
    Chakareski, Jacob
Action Evaluation Hardware Accelerator for Next-Generation Real-Time Reinforcement Learning in Emerging IoT Systems
用于新兴物联网系统中的下一代实时强化学习的动作评估硬件加速器
Energy Efficiency Analysis of UAV-Assisted mmWave HetNets
  • DOI:
    10.1109/icc.2018.8422870
  • 发表时间:
    2018-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Syed Naqvi;Jacob Chakareski;Nicholas Mastronarde;J. Xu;F. Afghah;Abolfazl Razi
  • 通讯作者:
    Syed Naqvi;Jacob Chakareski;Nicholas Mastronarde;J. Xu;F. Afghah;Abolfazl Razi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas Mastronarde其他文献

Minimizing Estimation Error Variance Using a Weighted Sum of Samples from the Soil Moisture Active Passive (SMAP) Satellite
使用土壤湿度主动被动 (SMAP) 卫星样本的加权和最小化估计误差方差
Markov decision process based energy-efficient scheduling for slice-parallel video decoding
基于马尔可夫决策过程的切片并行视频解码节能调度
A Queuing-Theoretic Approach to Task Scheduling and Processor Selection for Video-Decoding Applications
视频解码应用的任务调度和处理器选择的排队理论方法
  • DOI:
    10.1109/tmm.2007.906568
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Nicholas Mastronarde;M. Schaar
  • 通讯作者:
    M. Schaar
CrossFlow: A cross-layer architecture for SDR using SDN principles
CrossFlow:使用 SDN 原理的 SDR 跨层架构
Fast and low-complexity reinforcement learning for delay-sensitive energy harvesting wireless visual sensing systems
用于延迟敏感能量收集无线视觉传感系统的快速、低复杂度强化学习

Nicholas Mastronarde的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas Mastronarde', 18)}}的其他基金

Collaborative Research: SWIFT: LARGE: AI-Enabled Spectrum Coexistence between Active Communications and Passive Radio Services: Fundamentals, Testbed and Data
合作研究:SWIFT:大型:主动通信和无源无线电服务之间人工智能支持的频谱共存:基础知识、测试平台和数据
  • 批准号:
    2030157
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
  • 批准号:
    2332172
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
  • 批准号:
    2332173
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: Continuous Facial Sensing and 3D Reconstruction via Single-ear Wearable Biosensors
合作研究:CCSS:通过单耳可穿戴生物传感器进行连续面部传感和 3D 重建
  • 批准号:
    2401415
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: When RFID Meets AI for Occluded Body Skeletal Posture Capture in Smart Healthcare
合作研究:CCSS:当 RFID 与人工智能相遇,用于智能医疗保健中闭塞的身体骨骼姿势捕获
  • 批准号:
    2245607
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
  • 批准号:
    2319780
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
  • 批准号:
    2319781
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: Towards Energy-Efficient Millimeter Wave Wireless Networks: A Unified Systems and Circuits Framework
合作研究:CCSS:迈向节能毫米波无线网络:统一系统和电路框架
  • 批准号:
    2242700
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: When RFID Meets AI for Occluded Body Skeletal Posture Capture in Smart Healthcare
合作研究:CCSS:当 RFID 与人工智能相遇,用于智能医疗保健中闭塞的身体骨骼姿势捕获
  • 批准号:
    2245608
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: Towards Energy-Efficient Millimeter Wave Wireless Networks: A Unified Systems and Circuits Framework
合作研究:CCSS:迈向节能毫米波无线网络:统一系统和电路框架
  • 批准号:
    2242701
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CCSS: Collaborative Research: Quickest Threat Detection in Adversarial Sensor Networks
CCSS:协作研究:对抗性传感器网络中最快的威胁检测
  • 批准号:
    2236565
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了