Collaborative Research: Photon Funnels -- A Fundamentally New Concept for Concentrating Light
合作研究:光子漏斗——聚光的全新概念
基本信息
- 批准号:1711356
- 负责人:
- 金额:$ 22.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-15 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Collecting and concentrating light is an essential process in any system utilizing optics. Conventional lenses collect light and concentrate it to a spot, but the concentration spot moves as light rays strike at different angles or different positions. As a result, sensors and detectors can lose energy as a source moves, and the efficiency of an optical devices is often limited by the angular acceptance of a lens or lens system. In this project, a collaborative team at the University of Central Florida and the University of Texas at El Paso will explore a fundamentally new approach for concentrating light called "photon funnels," which is based on spatially engineered optical lattices. Photon funnels will be designed to leverage an optical phenomenon called "self-collimation" to control how light propagates within an engineered lattice. Using a collaborative approach that combines theory, simulation, fabrication, and optical testing, the team will develop fundamental knowledge that enables scientists and engineers to design photon funnels for a myriad of applications. The benefits to society will include new technologies for imaging, optical detection and sensing, telecommunications and energy harvesting. This interdisciplinary project will give research students cutting-edge training in optical engineering, physics, chemistry, materials science, and design and simulation. Educational outreach activities integrated with the project will bring the excitement of the research to the broader community and will help to improve understanding of science and technology and encourage youth to pursue careers in related fields.The research goals are to: 1) generate fundamental understanding of photon funnels and more generally self-collimating, spatially-variant lattices; 2) establish the fundamental performance-limits of photon funnels; 3) determine to what extent reciprocity limits their light collecting ability; and 4) create design-rules that engineers can use for their own applications. Photon funnels are wavelength-scale aperiodic three-dimensional lattices in which the unit cells are spatially varied in orientation to direct light via self-collimation to a single concentration zone. Because photon funnels work via self-collimation, they are not bound by Snell's law, so in principle they could collect and concentrate light incident at all positions, all angles, and all polarizations. No existing technology offers this extraordinary capability. Photon funnels and spatially-variant lattices are designed by spatially varying the structure of an optical lattices while preserving the self-collimating properties of the unit cells. Spatially-variant lattices are fundamentally different from photonic crystals, metamaterials, and devices based on graded-index and transformation optics. Spatially-variant lattices do not require exotic properties - like refractive index that is high, negative, or less than one - which makes spatially-variant lattices simpler to fabricate and inherently more manufacturable. The project will transform how engineers design optical systems because they could set aside traditional ray optics in certain applications and use photon funnels to concentrate light. Photon funnels and spatially-variant lattices offer tremendous potential because multiple functions can be integrated into a single device, including light collection and concentration, tight beam bending, wavelength separation, and control of polarization, phase, and power.
收集和聚集光是任何使用光学系统的基本过程。 传统的透镜收集光并将其集中到一个点,但是当光线以不同的角度或不同的位置照射时,集中点会移动。 结果,传感器和检测器会在源移动时损失能量,并且光学设备的效率通常受到透镜或透镜系统的角度接受度的限制。 在这个项目中,中佛罗里达大学和德克萨斯大学埃尔帕索分校的一个合作团队将探索一种全新的聚光方法,称为“光子漏斗”,它基于空间工程光学晶格。 光子漏斗将被设计成利用一种称为“自准直”的光学现象来控制光如何在工程晶格中传播。 使用结合理论,模拟,制造和光学测试的协作方法,该团队将开发基础知识,使科学家和工程师能够为无数应用设计光子漏斗。 对社会的好处将包括成像、光学探测和传感、电信和能源收集的新技术。 这个跨学科项目将为研究生提供光学工程,物理,化学,材料科学以及设计和模拟方面的尖端培训。 与该项目相结合的教育推广活动将把研究的兴奋带给更广泛的社区,并将有助于提高对科学和技术的理解,鼓励年轻人从事相关领域的职业。研究目标是:1)对光子漏斗和更普遍的自准直空间变化晶格产生基本的理解; 2)建立光子漏斗的基本性能极限; 3)确定互易性在多大程度上限制了它们的光收集能力;以及4)创建工程师可以用于他们自己的应用的设计规则。 光子漏斗是波长尺度的非周期性三维晶格,其中单位晶胞在空间上在取向上变化以经由自准直将光引导到单个集中区。 由于光子漏斗通过自准直工作,它们不受斯涅耳定律的约束,因此原则上它们可以收集和集中所有位置,所有角度和所有偏振的入射光。 没有任何现有技术能够提供这种非凡的能力。 光子漏斗和空间变化晶格是通过在空间上改变光学晶格的结构而设计的,同时保持单位晶胞的自准直特性。 空间变化晶格与光子晶体、超材料以及基于渐变折射率和变换光学的器件有着根本的不同。 空间变化的晶格不需要特殊的性质-如高、负或小于1的折射率-这使得空间变化的晶格更容易制造并且本质上更可制造。 该项目将改变工程师设计光学系统的方式,因为他们可以在某些应用中抛开传统的射线光学,使用光子漏斗来集中光线。 光子漏斗和空间变化晶格提供了巨大的潜力,因为多个功能可以集成到一个单一的设备中,包括光收集和集中,紧密的光束弯曲,波长分离,以及偏振,相位和功率的控制。
项目成果
期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gentle method for removing metal and restoring function after scanning electron microscopy
扫描电子显微镜检查后去除金属并恢复功能的温和方法
- DOI:10.1117/1.jmm.20.2.023601
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Sharma, Rashi;Digaum, Jennefir L.;West, Hannah;Schwarz, Casey M.;Kuebler, Stephen M.
- 通讯作者:Kuebler, Stephen M.
Leveraging philosophy to cultivate a culture of ethical and responsible conduct in chemistry and beyond
利用哲学培养化学及其他领域的道德和负责任的行为文化
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Kuebler, S. M.;Beever, J.
- 通讯作者:Beever, J.
Generation of Bessel-beam arrays for parallel fabrication in two-photon polymerization
生成用于双光子聚合中并行制造的贝塞尔光束阵列
- DOI:10.2351/7.0000313
- 发表时间:2021
- 期刊:
- 影响因子:2.1
- 作者:Cheng, He;Xia, Chun;Kuebler, Stephen M.;Golvari, Pooria;Sun, Mingman;Zhang, Meng;Yu, Xiaoming
- 通讯作者:Yu, Xiaoming
Binary-lens-embedded photonic crystals
双透镜嵌入式光子晶体
- DOI:10.1364/ol.458854
- 发表时间:2022
- 期刊:
- 影响因子:3.6
- 作者:Xia, Chun;Bustamante, Edgar;Kuebler, Stephen M.;Martinez, Noel P.;Rumpf, Raymond C.;Touma, Jimmy E.
- 通讯作者:Touma, Jimmy E.
Rapid microfabrication of helical structures for industrial applications
- DOI:10.1117/12.2608940
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:He Cheng;Pooria Golvari;Chun Xia;Mingman Sun;Meng Zhang;S. Kuebler;Xiaoming Yu
- 通讯作者:He Cheng;Pooria Golvari;Chun Xia;Mingman Sun;Meng Zhang;S. Kuebler;Xiaoming Yu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Kuebler其他文献
Stephen Kuebler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Kuebler', 18)}}的其他基金
CAREER: Three-Dimensional Multi-Scale Metallodielectric Materials
职业:三维多尺度金属介电材料
- 批准号:
0748712 - 财政年份:2008
- 资助金额:
$ 22.58万 - 项目类别:
Continuing Grant
Electroless metallization onto polymeric surfaces: synthesis, analysis, and modeling for achieving controlled nanoscale morphologies
聚合物表面化学镀金属:合成、分析和建模以实现受控的纳米级形态
- 批准号:
0809821 - 财政年份:2008
- 资助金额:
$ 22.58万 - 项目类别:
Continuing Grant
NSF-NATO POSTDOCTORAL FELLOWSHIPS
NSF-北约博士后奖学金
- 批准号:
9633868 - 财政年份:1996
- 资助金额:
$ 22.58万 - 项目类别:
Fellowship Award
GRADUTE RESEARCH FELLOWSHIP PROGRAM
研究生研究奖学金计划
- 批准号:
9355834 - 财政年份:1993
- 资助金额:
$ 22.58万 - 项目类别:
Fellowship Award
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Experimental General Relativity using Radio Interferometry of a Black Hole Photon Ring
合作研究:利用黑洞光子环射电干涉测量的实验广义相对论
- 批准号:
2307887 - 财政年份:2023
- 资助金额:
$ 22.58万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FO: Modified two-photon microscope with high-speed electrowetting array for imaging voltage transients in cerebellar molecular layer interneurons
合作研究:NCS-FO:带有高速电润湿阵列的改良双光子显微镜,用于对小脑分子层中间神经元的电压瞬变进行成像
- 批准号:
2319406 - 财政年份:2023
- 资助金额:
$ 22.58万 - 项目类别:
Continuing Grant
Collaborative Research: High Contrast Imaging at the Photon Noise Limit: On-Sky Validation of Speckle Reconstruction from WFS Telemetry
合作研究:光子噪声极限下的高对比度成像:WFS 遥测斑点重建的空中验证
- 批准号:
2308352 - 财政年份:2023
- 资助金额:
$ 22.58万 - 项目类别:
Standard Grant
Collaborative Research: Experimental General Relativity using Radio Interferometry of a Black Hole Photon Ring
合作研究:利用黑洞光子环射电干涉测量的实验广义相对论
- 批准号:
2307888 - 财政年份:2023
- 资助金额:
$ 22.58万 - 项目类别:
Standard Grant
Collaborative Research: High Contrast Imaging at the Photon Noise Limit: On-Sky Validation of Speckle Reconstruction from WFS Telemetry
合作研究:光子噪声极限下的高对比度成像:WFS 遥测斑点重建的空中验证
- 批准号:
2308351 - 财政年份:2023
- 资助金额:
$ 22.58万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FO: Modified two-photon microscope with high-speed electrowetting array for imaging voltage transients in cerebellar molecular layer interneurons
合作研究:NCS-FO:带有高速电润湿阵列的改良双光子显微镜,用于对小脑分子层中间神经元的电压瞬变进行成像
- 批准号:
2319405 - 财政年份:2023
- 资助金额:
$ 22.58万 - 项目类别:
Standard Grant
Collaborative Research: Single Photon Emission in Lanthanide-Doped 2D Materials & Devices
合作研究:稀土掺杂二维材料中的单光子发射
- 批准号:
2202278 - 财政年份:2022
- 资助金额:
$ 22.58万 - 项目类别:
Standard Grant
Collaborative Research: Single Photon Emission in Lanthanide-Doped 2D Materials & Devices
合作研究:稀土掺杂二维材料中的单光子发射
- 批准号:
2202280 - 财政年份:2022
- 资助金额:
$ 22.58万 - 项目类别:
Standard Grant
Collaborative Research: Engineering Fractional Photon Transfer for Random Laser Devices
合作研究:随机激光器件的工程分数光子传输
- 批准号:
2110215 - 财政年份:2021
- 资助金额:
$ 22.58万 - 项目类别:
Standard Grant
Collaborative Research: Two-photon absorption engineering in laser diodes for ultrafast pulse generation
合作研究:用于超快脉冲生成的激光二极管中的双光子吸收工程
- 批准号:
2133187 - 财政年份:2021
- 资助金额:
$ 22.58万 - 项目类别:
Standard Grant