Pattern recognition for one shot control in power systems
电力系统中单次控制的模式识别
基本信息
- 批准号:1711521
- 负责人:
- 金额:$ 36.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This work will develop new ways of using pattern recognition for one shot controls in power systems. One shot controls include disconnection of generation and load and fast power changes on HVDC transmission lines. The control actions used in this work generally reduce inter-area power flows which tends to improve transient and steady state stability. The reduction of power flows is also associated with the prevention of relays from tripping on overload. Many blackouts result from cascading outages involving generators and transmission lines tripping off-line due to protective relaying. The proposed controls promise to make these failure modes less likely to occur. In addition to one shot control at the transmission level, the investigators will also develop algorithms to enable consumer appliances such as AC units to detect the loss of a large generator nearby and turn off long enough for the Independent System Operator (ISO) to take corrective action at the transmission level. The proposed methods are inexpensive and easy to incorporate into smart devices because only local measurements are used. No remote communication is required. Utilities could provide rebates or rate discounts to motivate customers to purchase appliances that use the proposed control schemes. All the methods developed in this work from one shot controls at the transmission level to smart appliances that operate autonomously will contribute to a more resilient and self-healing electric grid. Many state variables in turbine governors, voltage regulators and other digital controllers are subject to maximum and minimum limits. The differential algebraic equations used for analytical solution of power system dynamics are only valid if controller variables do not hit their limiting values. This is one reason why accurate prediction of power system behavior requires detailed time domain simulation. Deriving control strategies from a large number of simulations is a big data problem that requires pattern recognition. The proposed controls are response based which means, for example, they do not receive information about the status of particular breakers. Current industry practices focus on event based risk assessment (e.g. Special Protection Scheme) assuming the operators are fully aware of what has happened in the grid. It is challenging to develop response based controls that are actuated quickly enough to stabilize some events. This research will use event detection and pattern recognition prediction to actuate response based control earlier so that the stabilizing effect is greater. Another area of this research will contribute to self healing for a smarter grid. The underlying scientific principle is that local modes of oscillation have higher frequencies than inter-area modes. The derivative engineering contribution of the work will show how a Fourier calculation can help detect nearby loss of generation events using only local frequency measurements. The proposed methods are novel compared to existing proposals in the literature for under frequency load shedding. Utilities are not currently benefitting from autonomous load shedding at the residential level as proposed here.
这项工作将为电力系统的一次性控制提供新的模式识别方法。一次性控制包括在高压直流输电线路上断开发电和负载以及快速功率变化。在这项工作中使用的控制动作通常会减少区域间的功率流动,从而趋于提高暂态和稳态的稳定性。减少功率流还与防止继电器在过载时跳闸有关。许多停电是由于发电机和输电线路因保护继电器而脱机的级联停电造成的。拟议的控制措施有望降低这些失效模式发生的可能性。除了在传输层面的一次控制外,研究人员还将开发算法,使家用电器(如交流设备)能够检测附近大型发电机的故障,并在足够长的时间内关闭,以便独立系统操作员(ISO)在传输层面采取纠正措施。所提出的方法价格低廉且易于集成到智能设备中,因为只使用局部测量。不需要远程通信。公用事业公司可以提供回扣或费率折扣,以激励客户购买使用拟议控制方案的电器。在这项工作中开发的所有方法,从传输级的一次控制到自主运行的智能设备,将有助于建立一个更具弹性和自我修复的电网。涡轮机调速器、电压调节器和其他数字控制器中的许多状态变量都有最大值和最小值限制。用于电力系统动力学解析解的微分代数方程只有在控制器变量不达到其极限值时才有效。这就是为什么准确预测电力系统的行为需要详细的时域仿真的原因之一。从大量的仿真中得出控制策略是一个需要模式识别的大数据问题。拟议的控制是基于响应的,这意味着,例如,它们不接收有关特定断路器状态的信息。目前的行业实践侧重于基于事件的风险评估(例如,特殊保护方案),假设运营商完全了解电网中发生的情况。开发基于响应的控制是一项挑战,这些控制能够足够快地启动以稳定某些事件。本研究将利用事件检测和模式识别预测来更早地启动基于响应的控制,以达到更大的稳定效果。这项研究的另一个领域将有助于智能电网的自我修复。潜在的科学原理是振荡的局部模态比区域间模态具有更高的频率。该工作的衍生工程贡献将展示傅立叶计算如何仅使用局部频率测量来帮助检测附近的发电损失事件。与已有的低频减载方法相比,本文提出的方法是新颖的。目前,公用事业公司并没有像这里提议的那样,从住宅层面的自动减载中受益。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Applying Different Wide-Area Response-Based Controls to Different Contingencies in Power Systems
- DOI:10.1109/peci51586.2021.9435251
- 发表时间:2019-08
- 期刊:
- 影响因子:0
- 作者:Shahrzad Iranmanesh;S. Rovnyak
- 通讯作者:Shahrzad Iranmanesh;S. Rovnyak
Methods of Missing Data Handling in One Shot Response based Power System Control
基于一次性响应的电力系统控制中的缺失数据处理方法
- DOI:10.35940/ijeat.a1062.1291s319
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Dahal, Niraj;Rovnyak, Steven M.
- 通讯作者:Rovnyak, Steven M.
Introducing a Concise Formulation of the Jacobian Matrix for Newton-Raphson Power Flow Solution in the Engineering Curriculum
在工程课程中引入牛顿-拉夫逊潮流解的雅可比矩阵的简明公式
- DOI:10.1109/peci51586.2021.9435220
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Conlin, Elijah;Dahal, Niraj;Rovnyak, Steven M.;Rovnyak, James L.
- 通讯作者:Rovnyak, James L.
Algorithms for Detecting Nearby Loss of Generation Events for Decentralized Controls
用于检测附近发电中断事件以进行分散控制的算法
- DOI:10.1109/peci51586.2021.9435265
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Dahal, Niraj;Rovnyak, Steven M.
- 通讯作者:Rovnyak, Steven M.
Performance of Response Based One Shot Controls Handling Missing Phasor Measurements
- DOI:10.1109/pesgm41954.2020.9281396
- 发表时间:2020-08
- 期刊:
- 影响因子:0
- 作者:Niraj Dahal;S. Rovnyak
- 通讯作者:Niraj Dahal;S. Rovnyak
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Rovnyak其他文献
Steven Rovnyak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Rovnyak', 18)}}的其他基金
CAREER: Open-Loop Discrete-Event Control in Electric Power Systems
职业:电力系统中的开环离散事件控制
- 批准号:
0426189 - 财政年份:2003
- 资助金额:
$ 36.42万 - 项目类别:
Standard Grant
CAREER: Open-Loop Discrete-Event Control in Electric Power Systems
职业:电力系统中的开环离散事件控制
- 批准号:
9983653 - 财政年份:2000
- 资助金额:
$ 36.42万 - 项目类别:
Standard Grant
相似国自然基金
HER2特异性双抗原表位识别诊疗一体化探针研制与临床前诊疗效能研究
- 批准号:82372014
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
基于Recognition-VR 虚拟现实的“家庭-社区-医院三向联动”轻度认知障碍防治模式研究
- 批准号:2021JJ60094
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
货物受体Surf4介导SPARCL1在神经细胞中转运的分子机制研究
- 批准号:32000488
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
分子马达Myo5b和肌动蛋白成核因子Spire介导的囊泡转运分子机制研究
- 批准号:32000486
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Rab GTPase 调控线粒体自噬的分子机制研究
- 批准号:31970695
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
膜蛋白TMED10调节非经典分泌分子机制的研究
- 批准号:31872832
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
核转运蛋白IMF调控胚珠发育的分子机理研究
- 批准号:31871422
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
富集于肺癌细胞外囊泡中的YRNA片段的选择性分拣/分泌机制及其功能研究
- 批准号:31871427
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
表皮生长因子从反式高尔基网络运输到细胞膜的分子机制及表皮生长因子受体新靶点的探索
- 批准号:31871421
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
动态整体面孔认知加工的认知机制的研究
- 批准号:31070908
- 批准年份:2010
- 资助金额:31.0 万元
- 项目类别:面上项目
相似海外基金
World in your hand: Investigating the underlying mechanism of thermal material recognition and its interaction with multisensory information
手中的世界:研究热材料识别的基本机制及其与多感官信息的相互作用
- 批准号:
23K24934 - 财政年份:2024
- 资助金额:
$ 36.42万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on Robust Multi-Person Gait Recognition Based on the Combination of Human Mesh Model and Silhouette
基于人体网格模型与剪影相结合的鲁棒多人步态识别研究
- 批准号:
24K20794 - 财政年份:2024
- 资助金额:
$ 36.42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Structure-Focused Multi-task Learning Approach for structural pattern recognition and analysis
用于结构模式识别和分析的以结构为中心的多任务学习方法
- 批准号:
24K20789 - 财政年份:2024
- 资助金额:
$ 36.42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Flexible metal-organic frameworks (MOFs) for hydrogen isotope separation: insights into smart recognition of gas molecules towards materials design
用于氢同位素分离的柔性金属有机框架(MOF):深入了解气体分子对材料设计的智能识别
- 批准号:
24K17650 - 财政年份:2024
- 资助金额:
$ 36.42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Amplification of chiral recognition and discrimination among amino-acid-based nanoscale ions during assembly induced by electrostatic interaction
静电相互作用诱导组装过程中氨基酸纳米级离子之间手性识别和辨别的放大
- 批准号:
2309886 - 财政年份:2024
- 资助金额:
$ 36.42万 - 项目类别:
Continuing Grant
FlexNIR-PD: A resource efficient UK-based production process for patented flexible Near Infrared Sensors for LIDAR, Facial recognition and high-speed data retrieval
FlexNIR-PD:基于英国的资源高效生产工艺,用于 LIDAR、面部识别和高速数据检索的专利柔性近红外传感器
- 批准号:
10098113 - 财政年份:2024
- 资助金额:
$ 36.42万 - 项目类别:
Collaborative R&D
Development of a Novel EMG-Based Neural Interface for Control of Transradial Prostheses with Gripping Assistance
开发一种新型的基于肌电图的神经接口,用于通过抓取辅助控制经桡动脉假体
- 批准号:
10748341 - 财政年份:2024
- 资助金额:
$ 36.42万 - 项目类别:
Class-Balanced Contrastive Learning for Multimodal Recognition
多模态识别的类平衡对比学习
- 批准号:
24K20831 - 财政年份:2024
- 资助金额:
$ 36.42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Circuit and cellular analysis of the lateral entorhinal cortex in associative recognition memory
联想识别记忆中外侧内嗅皮层的电路和细胞分析
- 批准号:
BB/Y006402/1 - 财政年份:2024
- 资助金额:
$ 36.42万 - 项目类别:
Research Grant
CAREER: Decoding the Code of Glycan-Collectin Interactions: Computational Engineering of Surfactant Proteins for Tailored Glycan Recognition
职业:解码聚糖-收集素相互作用的密码:用于定制聚糖识别的表面活性剂蛋白的计算工程
- 批准号:
2338401 - 财政年份:2024
- 资助金额:
$ 36.42万 - 项目类别:
Continuing Grant