CCSS: Collaborative Research: Learn-and-Adapt to Manage Dynamic Cyber-Physical Networks
CCSS:协作研究:学习和适应管理动态信息物理网络
基本信息
- 批准号:1711471
- 负责人:
- 金额:$ 32.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project investigates algorithmic innovations targeting the cyber-physical system (CPS) opportunities emerging from cloud, transportation, and power networks. The envisioned advances pertain to models and algorithms for learn-and-adapt approaches to managing CPS; online data-driven workload balancing for sustainable data center networks; real-time traffic management for transportation networks in smart cities; and learning-aided online decentralized energy management for smart power networks.The proposed research has great potential for social, environmental, and economic benefits, as it directly impacts the wireless Internet, scalable cloud networks, intelligent transportation, and microgrids supporting smart homes and cars. Cloud users' experience can be enhanced with markedly low request delay. Smart cars can end up consuming less fuel, and experience less waiting time at road intersections due to efficient signal control and vehicle routing. Finally, power grid operators can benefit from relaxed battery capacity requirements and fast electric vehicle charging at substations. Broader transformative impact will be effected by reaching out to middle-school students and the community, involving undergraduates in research, increasing participation of under-represented minorities, and promoting a scientifically literate public.
该项目研究针对云、交通和电力网络中出现的网络物理系统(CPS)机会的算法创新。这些进展涉及学习和适应方法管理CPS的模型和算法;可持续数据中心网络的在线数据驱动的工作负载平衡;智能城市交通网络的实时交通管理;以及智能电网的学习辅助在线分散能源管理。拟议的研究具有巨大的社会、环境和经济效益潜力,因为它直接影响无线互联网、可扩展的云网络、智能交通以及支持智能家居和汽车的微电网。通过显著降低请求延迟,提升云用户体验。由于有效的信号控制和车辆路线,智能汽车最终可以消耗更少的燃料,并在道路交叉口经历更少的等待时间。最后,电网运营商可以受益于放宽的电池容量要求和变电站的电动汽车快速充电。通过接触中学生和社区,让本科生参与研究,增加未被充分代表的少数群体的参与,并促进具有科学素养的公众,将产生更广泛的变革影响。
项目成果
期刊论文数量(88)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Distribution System State Estimation Using Data- and Physics-Driven Deep Neural Networks
使用数据和物理驱动的深度神经网络进行配电系统状态估计
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Zhang, L.;Wang, G.;Giannakis, G. B.
- 通讯作者:Giannakis, G. B.
Ensemble Gaussian Processes with Spectral Features for Online Interactive Learning with Scalability
- DOI:
- 发表时间:2020-06
- 期刊:
- 影响因子:0
- 作者:Qin Lu;G. V. Karanikolas;Yanning Shen;G. Giannakis
- 通讯作者:Qin Lu;G. V. Karanikolas;Yanning Shen;G. Giannakis
Real-Time Energy Management in Microgrids With Reduced Battery Capacity Requirements
微电网中的实时能源管理,降低电池容量要求
- DOI:10.1109/tsg.2017.2783894
- 发表时间:2019-03
- 期刊:
- 影响因子:9.6
- 作者:Bingcong Li;Tianyi Chen;Xin Wang;Georgios B. Giannakis
- 通讯作者:Georgios B. Giannakis
Finite-Sample Analysis of Decentralized Temporal-Difference Learning with Linear Function Approximation
线性函数逼近的分散式时差学习的有限样本分析
- DOI:
- 发表时间:2019-11
- 期刊:
- 影响因子:0
- 作者:J Sun;G Wang;GB Giannakis;Q Yang;Z Yang
- 通讯作者:Z Yang
Nonlinear Structural Vector Autoregressive Models With Application to Directed Brain Networks
非线性结构向量自回归模型及其在定向脑网络中的应用
- DOI:10.1109/tsp.2019.2940122
- 发表时间:2019
- 期刊:
- 影响因子:5.4
- 作者:Shen, Yanning;Giannakis, Georgios B.;Baingana, Brian
- 通讯作者:Baingana, Brian
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Georgios Giannakis其他文献
Georgios Giannakis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Georgios Giannakis', 18)}}的其他基金
Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
- 批准号:
2332173 - 财政年份:2024
- 资助金额:
$ 32.78万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Robust Learning over Graphs
协作研究:CIF:媒介:图上的鲁棒学习
- 批准号:
2312547 - 财政年份:2023
- 资助金额:
$ 32.78万 - 项目类别:
Continuing Grant
IMR: MM-1C: Learning-driven Models for 5G Internet Measurements
IMR:MM-1C:5G 互联网测量的学习驱动模型
- 批准号:
2220292 - 财政年份:2022
- 资助金额:
$ 32.78万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: Cognitive-IoV with Simultaneous Sensing and Communications via Dynamic RF Front End
合作研究:SWIFT:通过动态射频前端实现同步传感和通信的认知车联网
- 批准号:
2128593 - 财政年份:2021
- 资助金额:
$ 32.78万 - 项目类别:
Standard Grant
CCSS: Online Learning for IoT Monitoring and Management
CCSS:物联网监控和管理在线学习
- 批准号:
2126052 - 财政年份:2021
- 资助金额:
$ 32.78万 - 项目类别:
Standard Grant
Hybrid mmWave mMIMO Transceiver Design for Doubly-Selective Channels
适用于双选通道的混合毫米波 mMIMO 收发器设计
- 批准号:
2102312 - 财政年份:2020
- 资助金额:
$ 32.78万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Collective Intelligence for Proactive Autonomous Driving (CI-PAD)
CPS:中:协作研究:主动自动驾驶集体智慧 (CI-PAD)
- 批准号:
2103256 - 财政年份:2020
- 资助金额:
$ 32.78万 - 项目类别:
Standard Grant
CIF: Medium: Adaptive Diffusions for Scalable and Robust Learning over Graphs
CIF:中:用于图上可扩展和鲁棒学习的自适应扩散
- 批准号:
1901134 - 财政年份:2019
- 资助金额:
$ 32.78万 - 项目类别:
Standard Grant
CCSS: Collaborative Research: Smart-Grid Powered Green Communications in Heterogeneous Networks
CCSS:协作研究:异构网络中智能电网驱动的绿色通信
- 批准号:
1508993 - 财政年份:2015
- 资助金额:
$ 32.78万 - 项目类别:
Standard Grant
EAGER-DynamicData: Judicious Censoring, Random Sketching, and Efficient Validate for Learning Patterns from Dynamically-Changing and Large-Scale Data Sets
EAGER-DynamicData:明智的审查、随机草图和高效验证,用于从动态变化的大规模数据集中学习模式
- 批准号:
1500713 - 财政年份:2015
- 资助金额:
$ 32.78万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
- 批准号:
2332172 - 财政年份:2024
- 资助金额:
$ 32.78万 - 项目类别:
Standard Grant
Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
- 批准号:
2332173 - 财政年份:2024
- 资助金额:
$ 32.78万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: Continuous Facial Sensing and 3D Reconstruction via Single-ear Wearable Biosensors
合作研究:CCSS:通过单耳可穿戴生物传感器进行连续面部传感和 3D 重建
- 批准号:
2401415 - 财政年份:2023
- 资助金额:
$ 32.78万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: When RFID Meets AI for Occluded Body Skeletal Posture Capture in Smart Healthcare
合作研究:CCSS:当 RFID 与人工智能相遇,用于智能医疗保健中闭塞的身体骨骼姿势捕获
- 批准号:
2245607 - 财政年份:2023
- 资助金额:
$ 32.78万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
- 批准号:
2319780 - 财政年份:2023
- 资助金额:
$ 32.78万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
- 批准号:
2319781 - 财政年份:2023
- 资助金额:
$ 32.78万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: Towards Energy-Efficient Millimeter Wave Wireless Networks: A Unified Systems and Circuits Framework
合作研究:CCSS:迈向节能毫米波无线网络:统一系统和电路框架
- 批准号:
2242700 - 财政年份:2023
- 资助金额:
$ 32.78万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: When RFID Meets AI for Occluded Body Skeletal Posture Capture in Smart Healthcare
合作研究:CCSS:当 RFID 与人工智能相遇,用于智能医疗保健中闭塞的身体骨骼姿势捕获
- 批准号:
2245608 - 财政年份:2023
- 资助金额:
$ 32.78万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: Towards Energy-Efficient Millimeter Wave Wireless Networks: A Unified Systems and Circuits Framework
合作研究:CCSS:迈向节能毫米波无线网络:统一系统和电路框架
- 批准号:
2242701 - 财政年份:2023
- 资助金额:
$ 32.78万 - 项目类别:
Standard Grant
CCSS: Collaborative Research: Quickest Threat Detection in Adversarial Sensor Networks
CCSS:协作研究:对抗性传感器网络中最快的威胁检测
- 批准号:
2236565 - 财政年份:2022
- 资助金额:
$ 32.78万 - 项目类别:
Standard Grant