Polar (DCL- 16-119): Collaborative Research: Computational Guided Inquiry for Incorporating Polar Research into Undergraduate Curricula
极地(DCL-16-119):协作研究:将极地研究纳入本科课程的计算引导查询
基本信息
- 批准号:1712282
- 负责人:
- 金额:$ 13.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will explore impacts on student learning when computational guided inquiry (CGI) is used to allow undergraduate students to experience polar research in a meaningful way. In a CGI-structured course, the instructor guides the students in scientific inquiry using computational tools for managing, analyzing, and visualizing data. This project will create a set of seven CGI modules (e,g, Jupyter notebooks, Excel spreadsheets) that will incorporate polar research and data into a variety of undergraduate classes. The aim is to improve student climate literacy and to increase student ability to use real data to conduct scientific inquiry while at the same time enhancing learning outcomes for course objectives. Instructors will be trained in deploying the CGI modules in an active learning framework in a summer workshop and will then implement the modules in a variety of undergraduate classes (atmosphere science, chemistry, physics, environmental economics, and computer science). Independent evaluation will be used to explore learning outcomes. A second workshop will address challenges and lead to improved modules and instructional material that will be disseminated on an educational website portal.The proposed work will improve our understanding of how students learn, including how learning outcomes can be improved through integration of (1) use of real-world data (2) the active-learning technique of classroom flipping and (3) computational tools. Use of real-world datasets is believed to authentically engage students in questions that are relevant to them. The CGI modules represent a novel curricular tool, which has the potential to foster cross-disciplinary learning: students learn course topics while also learning about polar data, how to use real data in inquiry, and computer programming. The proposed work is a first step in testing and evaluating the potential of these CGI modules to enhance student learning.The proposed work represents a range of broader impacts, including education of undergraduate students, development of course materials, advancement of active learning methods and undergraduate student participation in research. This work will benefit society through increasing climate literacy, understanding of the Polar Regions and their role in the climate, and computational literacy at the undergraduate level. Furthermore, the skills acquired by students engaging in the active learning activities proposed here are expected to be useful in contexts beyond the classroom. These include collaboration, critical thinking, data analysis, and problem solving skills, which are vital in helping students learn to think scientifically about engineering solutions to complex challenges; these skills are believed to be as critical to successful STEM education as the content itself. Student engagement in inquiry with real data and bona fide research tools will help change their self-perceptions from passive learners to realized scientists. The educational materials developed as part of this proposal will directly impact a variety of undergraduate courses through the engagement of instructors from a range of institutions, including state universities, liberal arts colleges, and community colleges. This project has the potential of reaching an estimated 1000 undergraduate students during the grant period. To achieve wider dissemination, and to continue to reach undergraduate students after the grant period ends, all materials will be shared in an online educational portal.
当使用计算指导性探究(CGI)以允许本科生以有意义的方式体验极地研究时,该项目将探讨对学生学习的影响。在CGI结构的课程中,讲师使用计算工具来指导学生进行科学询问,以管理,分析和可视化数据。该项目将创建一组七个CGI模块(E,G,Jupyter Notebooks,Excel电子表格),将极地研究和数据纳入各种本科课程。目的是提高学生气候素养,并提高学生使用真实数据进行科学探究的能力,同时增强课程目标的学习成果。 将在夏季研讨会中在主动学习框架中部署CGI模块的培训,然后在各种本科班级(大气科学,化学,物理学,环境经济学和计算机科学)中实施模块。独立评估将用于探索学习成果。第二个研讨会将解决挑战,并导致改进的模块和教学材料,这些模块和教学材料将在教育网站门户网站上进行分散。拟议的工作将改善我们对学生学习方式的理解,包括如何通过(1)使用现实世界中的数据(2)使用(2)课堂翻转和(3)计算工具来改善学习成果。据信,使用现实世界数据集可以真实地吸引学生参与与他们相关的问题。 CGI模块代表了一种新型的课程工具,该工具有可能培养跨学科学习:学生学习课程主题,同时还学习极性数据,如何在查询中使用真实数据以及计算机编程。拟议的工作是测试和评估这些CGI模块增强学生学习潜力的第一步。拟议的工作代表了一系列更广泛的影响,包括对本科生的教育,开发课程材料的发展,积极学习方法的发展以及学生参与研究。这项工作将通过提高气候素养,对极地地区及其在气候中的作用以及本科层面的计算素养来使社会受益。此外,预计从事课堂以外的环境中,从事积极学习活动的学生获得的技能将在此处提出的积极学习活动。其中包括协作,批判性思维,数据分析和解决问题的技能,这对于帮助学生学习对复杂挑战的工程解决方案进行科学思考至关重要;人们认为这些技能对于成功的STEM教育与内容本身一样至关重要。与真实数据和真正的研究工具一起探究学生的参与将有助于将自我感知从被动学习者转变为实现的科学家。作为该提案的一部分开发的教育材料将通过包括州立大学,文科学院和社区学院在内的各种机构的讲师的参与来直接影响各种本科课程。该项目有可能在赠款期间覆盖估计的1000名本科生。为了实现更广泛的传播,并在赠款期结束后继续吸引本科生,所有材料都将在在线教育门户网站中共享。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Teaching modules for estimating climate change impacts in economics courses using computational guided inquiry
使用计算引导探究来估计经济学课程中气候变化影响的教学模块
- DOI:10.1080/00220485.2020.1731383
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Fortmann, Lea;Beaudoin, Justin;Rajbhandari, Isha;Wright, Aedin;Neshyba, Steven;Rowe, Penny
- 通讯作者:Rowe, Penny
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Neshyba其他文献
Steven Neshyba的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Neshyba', 18)}}的其他基金
Collaborative Research: Polar (NSF 19-601): RUI: Computational Polar ENgagement through GUided INquiry (Computational PENGUIN)
合作研究:极地 (NSF 19-601):RUI:通过引导查询进行计算极地参与(计算企鹅)
- 批准号:
2021213 - 财政年份:2020
- 资助金额:
$ 13.78万 - 项目类别:
Standard Grant
RUI: Toward a Comprehensive Theory of Mesoscopic Morphology of Ice
RUI:走向冰介观形态的综合理论
- 批准号:
1807898 - 财政年份:2018
- 资助金额:
$ 13.78万 - 项目类别:
Standard Grant
RUI: Scanning electron microscopy and multiscale modeling of mesoscopically rough faceted ice
RUI:扫描电子显微镜和介观粗糙多面冰的多尺度建模
- 批准号:
1306366 - 财政年份:2013
- 资助金额:
$ 13.78万 - 项目类别:
Standard Grant
High Resolution Infrared Radiometry of the Arctic Sky from a Ship-based Platform
从船基平台对北极天空进行高分辨率红外辐射测量
- 批准号:
9712873 - 财政年份:1997
- 资助金额:
$ 13.78万 - 项目类别:
Standard Grant
相似国自然基金
OH+HCl/DCl↔H2O/HOD+Cl态-态反应的全维微分截面研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
番茄抗病毒基因DCL2b受病毒诱导调控的分子机理
- 批准号:32272744
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
番茄抗病毒基因DCL2b受病毒诱导调控的分子机理
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
OH+HCl/DCl↔H2O/HOD+Cl态-态反应的全维微分截面研究
- 批准号:22273104
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
RNAi介导的转S1基因大豆对SMV广谱抗性启动机制的解析
- 批准号:31801388
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Education DCL: EAGER: Teaching Privacy via Stakeholder Modeling
教育 DCL:EAGER:通过利益相关者建模教授隐私
- 批准号:
2335625 - 财政年份:2024
- 资助金额:
$ 13.78万 - 项目类别:
Standard Grant
Education DCL: EAGER: An Embedded Case Study Approach for Broadening Students' Mindset for Ethical and Responsible Cybersecurity
教育 DCL:EAGER:一种嵌入式案例研究方法,用于拓宽学生道德和负责任的网络安全思维
- 批准号:
2335636 - 财政年份:2024
- 资助金额:
$ 13.78万 - 项目类别:
Standard Grant
Education DCL: EAGER: Advancing Secure Coding Education: Empowering Students to Safely Utilize AI-powered Coding Assistant Tools
教育 DCL:EAGER:推进安全编码教育:使学生能够安全地利用人工智能驱动的编码辅助工具
- 批准号:
2335798 - 财政年份:2023
- 资助金额:
$ 13.78万 - 项目类别:
Standard Grant
Education DCL: EAGER: Experiential Learning Platform and Curricular Modules for Quantum Computing Security and Privacy Education
教育 DCL:EAGER:量子计算安全和隐私教育的体验式学习平台和课程模块
- 批准号:
2335788 - 财政年份:2023
- 资助金额:
$ 13.78万 - 项目类别:
Standard Grant
Collaborative Research: BPE Track 2: Disability DCL - Capturing Narratives that Characterize Neurodivergent Strengths and Weaknesses
合作研究:BPE 轨道 2:残疾 DCL - 捕捉表征神经分歧优势和劣势的叙述
- 批准号:
2306831 - 财政年份:2023
- 资助金额:
$ 13.78万 - 项目类别:
Standard Grant