EAPSI: Investigating the Fundamental Relationship Between Conductivity and Molecular Motion of Polymerized Ionic Liquids
EAPSI:研究聚合离子液体的电导率和分子运动之间的基本关系
基本信息
- 批准号:1713929
- 负责人:
- 金额:$ 0.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Fellowship Award
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Today's energy demands have led to an increased need for improved electrolytic materials in applications such as lithium ion batteries and dye-sensitized solar cells. Traditionally, liquid electrolytes have been used in these applications due to their high ionic conductivity, but because they are prone to flammability and leakage, it is crucial to find a safer alternative. This study will investigate the structure and conductive properties of polymeric ionic liquids (PILs) as mechanically robust alternatives to liquid electrolytes. This research will be conducted at Osaka University in Japan with Dr. Tadashi Inoue, a world-leading expert in polymer dynamics. Polymerized ionic liquids (PILs) are defined as single ion conducting ionomers, in which one of the ionic species is incorporated in the polymer chain while the other is nominally free to transport. Although they are a safer, mechanically stable alternative to traditional liquid electrolytes, the challenge that remains is increasing the low ion transport rates inherent to polymeric materials. Utilizing smaller ionic charge carriers should increase the conductivity of the material and by varying the size of the charge carrier, greater insight on the relationship between conductivity and structure can be obtained. Because changing the material architecture will change the segmental motion of the polymer chain, Dr. Tadashi Inoue's expertise in polymer dynamics will greatly aid in understanding the fundamental relationship between structure, mobility, and polymer chain relaxation. The results of this study will make a positive contribution to the current understanding of polymer conductivity for the design of safer and more efficient electrolytic materials. This award, under the East Asia and Pacific Summer Institutes program, supports summer research by a U.S. graduate student and is jointly funded by NSF and Japan Society for the Promotion of Science.
当今的能源需求已经导致在诸如锂离子电池和染料敏化太阳能电池的应用中对改进的电解质材料的需求增加。传统上,液体电解质由于其高离子电导率而被用于这些应用中,但由于它们易于易燃和泄漏,因此找到更安全的替代品至关重要。本研究将探讨聚合物离子液体(PIL)的结构和导电性能作为液体电解质的机械鲁棒性替代品。这项研究将在日本大坂大学与世界领先的聚合物动力学专家井上忠志博士一起进行。聚合的离子液体(PIL)被定义为单离子导电离聚物,其中一种离子物质被并入聚合物链中,而另一种名义上自由传输。尽管它们是传统液体电解质的更安全、机械稳定的替代品,但仍然存在的挑战是提高聚合物材料固有的低离子传输速率。利用较小的离子电荷载体应增加材料的电导率,并且通过改变电荷载体的大小,可以获得对电导率和结构之间关系的更深入了解。由于改变材料结构将改变聚合物链的链段运动,Tadashi Inoue博士在聚合物动力学方面的专业知识将大大有助于理解结构,流动性和聚合物链松弛之间的基本关系。本研究的结果将对目前对聚合物导电性的理解做出积极的贡献,以设计更安全,更高效的电解质材料。该奖项是东亚和太平洋夏季研究所计划下的一个奖项,由美国国家科学基金会和日本科学促进会共同资助,支持美国研究生的夏季研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Preeya Kuray其他文献
Preeya Kuray的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Investigating the fundamental mechanisms of immune cell exocytosis
研究免疫细胞胞吐作用的基本机制
- 批准号:
RGPIN-2020-07139 - 财政年份:2022
- 资助金额:
$ 0.54万 - 项目类别:
Discovery Grants Program - Individual
Investigating fundamental properties and clinical applications of the optoretinogram
研究视视网膜图的基本特性和临床应用
- 批准号:
10553620 - 财政年份:2022
- 资助金额:
$ 0.54万 - 项目类别:
ERI: Investigating the Fundamental Interactions between Mesenchymal Stem Cells and Hydrogels – Towards a Stem Cell-Biomaterial Therapy for Osteoarthritis
ERI:研究间充质干细胞和水凝胶之间的基本相互作用 — 走向骨关节炎的干细胞生物材料疗法
- 批准号:
2138587 - 财政年份:2022
- 资助金额:
$ 0.54万 - 项目类别:
Continuing Grant
Investigating fundamental properties and clinical applications of the optoretinogram
研究视视网膜图的基本特性和临床应用
- 批准号:
10357416 - 财政年份:2022
- 资助金额:
$ 0.54万 - 项目类别:
Investigating Fundamental Toughening Mechanisms in Nanocellular Foams
研究纳米泡沫的基本增韧机制
- 批准号:
2032539 - 财政年份:2021
- 资助金额:
$ 0.54万 - 项目类别:
Continuing Grant
Investigating the fundamental mechanisms of immune cell exocytosis
研究免疫细胞胞吐作用的基本机制
- 批准号:
RGPIN-2020-07139 - 财政年份:2021
- 资助金额:
$ 0.54万 - 项目类别:
Discovery Grants Program - Individual
Investigating Fundamental Physics with Cosmological Probes
用宇宙学探测器研究基础物理
- 批准号:
2013953 - 财政年份:2020
- 资助金额:
$ 0.54万 - 项目类别:
Continuing Grant
Investigating the fundamental mechanisms of immune cell exocytosis
研究免疫细胞胞吐作用的基本机制
- 批准号:
RGPIN-2020-07139 - 财政年份:2020
- 资助金额:
$ 0.54万 - 项目类别:
Discovery Grants Program - Individual
Learning Solutions: Investigating Fundamental Tools, Resources & Strategies to Support Professionals Addressing Persistent Issues in STEM
学习解决方案:研究基本工具、资源
- 批准号:
2011424 - 财政年份:2020
- 资助金额:
$ 0.54万 - 项目类别:
Standard Grant
Investigating the fundamental biological mechanisms underlying motor function and social cognition
研究运动功能和社会认知的基本生物学机制
- 批准号:
2265115 - 财政年份:2019
- 资助金额:
$ 0.54万 - 项目类别:
Studentship














{{item.name}}会员




