Defining the architecture of the Pyk2 activation complex

定义 Pyk2 激活复合体的架构

基本信息

  • 批准号:
    1715411
  • 负责人:
  • 金额:
    $ 80.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-15 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Neurons communicate with neighboring neurons through synaptic connections. This neuronal 'wiring' can change and adapt over time. Many aspects of the mechanisms controlling the changes in neuronal connections remain enigmatic. Nevertheless, the ability to strengthen and weaken neuron connections is critically important because this rewiring is linked to learning and memory formation. Each synaptic connection hosts a large collection of proteins poised to interpret patterns of neuronal communication. This research project seeks to discover how one team of proteins responds to synaptic activity to signal for synaptic changes. The central hub of the signaling team is Pyk2, a protein kinase. Pyk2 activates by rearranging its structure to form a large signaling assembly with associated signaling factors. The goal of this research is to determine the architecture of the Pyk2 signaling assembly. Understanding the assembly and activation of the Pyk2 signaling team will yield insights into how neuronal rewiring is initiated at the molecular scale. This proposal will train graduate and undergraduate students by using a team-based concept where graduate and undergraduate students will have an advisor/advisee relationship.The objectives of this project are to reveal the molecular mechanisms of Pyk2 signaling linking post-synaptic Ca2+ influx to the Src cascades that tune synaptic plasticity. Illuminating the architecture of scaffolded signaling complexes remains a frontier goal in understanding synaptic plasticity. However, multi-protein signaling complexes are typically large and highly dynamic, challenging targets for structural characterization. While structures have been determined for isolated pieces of the signaling effectors, a critical question remains: how do the pieces assemble into functional signaling complexes? This project employs several strategies to dissect the activational signaling complex of the Pyk2 non-receptor tyrosine kinase. By leveraging hydrogen/deuterium exchange mass spectrometry, protein interactions and conformational changes will be mapped. Single particle electron microscopy will illuminate the overall shape of the activation complex. These approaches are amenable to describing heterogeneous ensembles of accessible conformers and architectures. Structural restraints derived by the complementary biophysical approaches will be integrated to build a model of the higher-order architecture of the signaling complex responsible for activating Pyk2. This project is supported by the Molecular Biophysics Cluster of the Molecular and Cellular Biosciences Division in the Biological Sciences Directorate.
神经元通过突触连接与相邻的神经元进行通信。这种神经元“布线”可以随着时间的推移而改变和适应。控制神经元连接变化的机制的许多方面仍然是谜。然而,加强和削弱神经元连接的能力至关重要,因为这种重新布线与学习和记忆的形成有关。每一个突触连接都有大量的蛋白质集合,这些蛋白质可以解释神经元的通讯模式。该研究项目旨在发现一组蛋白质如何响应突触活动以发出突触变化的信号。信号传导团队的中心枢纽是Pyk 2,一种蛋白激酶。Pyk 2通过重新排列其结构来激活,以形成具有相关信号因子的大型信号组装。本研究的目标是确定Pyk 2信号组装的架构。了解Pyk 2信号传导团队的组装和激活将有助于深入了解神经元重新布线是如何在分子尺度上启动的。本项目将以团队为基础,以导师/被导师的关系培养研究生和本科生。本项目的目标是揭示Pyk 2信号通路连接突触后Ca 2+内流和Src级联的分子机制,从而调节突触可塑性。阐明支架信号复合物的结构仍然是理解突触可塑性的前沿目标。然而,多蛋白信号传导复合物通常是大的和高度动态的,具有挑战性的结构表征的目标。虽然已经确定了信号效应器的孤立片段的结构,但仍然存在一个关键问题:这些片段如何组装成功能性信号复合物?该项目采用几种策略来剖析Pyk 2非受体酪氨酸激酶的激活信号复合物。通过利用氢/氘交换质谱,蛋白质相互作用和构象变化将被映射。单粒子电子显微镜将阐明活化复合物的整体形状。这些方法适合于描述可访问的构象和架构的异构集合。由互补的生物物理方法得到的结构限制将被整合,以建立负责激活Pyk 2的信号复合物的高阶结构的模型。该项目得到了生物科学理事会分子和细胞生物科学部分子生物物理学小组的支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Conformational Dynamics of FERM-Mediated Autoinhibition in Pyk2 Tyrosine Kinase
Pyk2 酪氨酸激酶中 FERM 介导的自抑制的构象动力学
  • DOI:
    10.1021/acs.biochem.9b00541
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Loving, Hanna S.;Underbakke, Eric S.
  • 通讯作者:
    Underbakke, Eric S.
Controlling Kinase Activities by Selective Inhibition of Peptide Substrates
Activation loop phosphorylation tunes conformational dynamics underlying Pyk2 tyrosine kinase activation
激活环磷酸化调节 Pyk2 酪氨酸激酶激活的构象动力学
  • DOI:
    10.1016/j.str.2023.02.003
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Palhano Zanela, Tania M.;Woudenberg, Alexzandrea;Romero Bello, Karen G.;Underbakke, Eric S.
  • 通讯作者:
    Underbakke, Eric S.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Underbakke其他文献

Eric Underbakke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

The formation and evolution of planetary systems in dense star clusters
  • 批准号:
    11043007
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 80.16万
  • 项目类别:
    Continuing Grant
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
  • 批准号:
    2339197
  • 财政年份:
    2024
  • 资助金额:
    $ 80.16万
  • 项目类别:
    Standard Grant
Travel: Student Travel Support for the 51st International Symposium on Computer Architecture (ISCA)
旅行:第 51 届计算机体系结构国际研讨会 (ISCA) 的学生旅行支持
  • 批准号:
    2409279
  • 财政年份:
    2024
  • 资助金额:
    $ 80.16万
  • 项目类别:
    Standard Grant
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
  • 批准号:
    2419386
  • 财政年份:
    2024
  • 资助金额:
    $ 80.16万
  • 项目类别:
    Standard Grant
I-Corps: Highly Scalable Differential Power Processing Architecture
I-Corps:高度可扩展的差分电源处理架构
  • 批准号:
    2348571
  • 财政年份:
    2024
  • 资助金额:
    $ 80.16万
  • 项目类别:
    Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329759
  • 财政年份:
    2024
  • 资助金额:
    $ 80.16万
  • 项目类别:
    Standard Grant
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
  • 批准号:
    2904511
  • 财政年份:
    2024
  • 资助金额:
    $ 80.16万
  • 项目类别:
    Studentship
The architecture and evolution of host control in a microbial symbiosis
微生物共生中宿主控制的结构和进化
  • 批准号:
    BB/X014657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 80.16万
  • 项目类别:
    Research Grant
Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
  • 批准号:
    10824044
  • 财政年份:
    2024
  • 资助金额:
    $ 80.16万
  • 项目类别:
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
  • 批准号:
    2344424
  • 财政年份:
    2024
  • 资助金额:
    $ 80.16万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了