Linear and Nonlinear Data Assimilation in Turbulent Systems

湍流系统中的线性和非线性数据同化

基本信息

  • 批准号:
    1716801
  • 负责人:
  • 金额:
    $ 14.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-15 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

Turbulent flows play a fundamental role in weather and climate dynamics, which are major factors impacting environmental stability, agricultural production, civil infrastructure, and other important areas. Turbulence is highly chaotic, and therefore modern approaches to predicting its behavior are based on simulations. A major difficulty in accurately simulating turbulent flows is the problem of determining the initial state of the flow. For example, weather prediction models typically require the present state of the weather as input. However, the state of the weather is only measured at certain points, such as at the locations of weather stations or weather satellites. Data assimilation makes up for the lack of complete knowledge of the initial state. It incorporates incoming data into the equations, driving the simulation to the correct solution. The objective of this project is to develop innovative computational and mathematical methods to test, improve, and extend a promising new class of algorithms for data assimilation in turbulent flows. Results of this work increase predictive capabilities of scientists, produce new mathematical and computational tools, and help educate students in challenging new areas with real-world impacts. A student participates in the work of the project.The project focuses on major areas of research aimed at making a new data assimilation tool as useful as possible to researchers in fluid dynamics and geophysics. Firstly, an in-depth analytical and computational study of new nonlinear versions of the data assimilation algorithm is carried out, and its convergence rates are carefully estimated. Secondly, the investigator carries out the first 3D simulations using the new algorithm in the context of the incompressible Navier-Stokes equations of fluids, and makes a detailed comparison of the method with cutting-edge data assimilation methods. Finally, the method is extended to multi-physics settings to include fluids driven by heat convection and fluids with magnetic properties. A student participates in the work of the project.
湍流在天气和气候动力学中发挥着重要作用,是影响环境稳定、农业生产、民用基础设施和其他重要领域的主要因素。湍流是高度混乱的,因此预测其行为的现代方法是基于模拟的。精确模拟湍流的一个主要困难是确定流动的初始状态问题。例如,天气预报模型通常需要当前的天气状态作为输入。然而,天气状况只能在某些点测量,例如气象站或气象卫星的位置。数据同化弥补了对初始状态缺乏完整知识的不足。它将输入的数据整合到方程中,推动模拟得到正确的解决方案。该项目的目标是开发创新的计算和数学方法来测试、改进和扩展一类有前途的新算法,用于湍流中的数据同化。这项工作的结果提高了科学家的预测能力,产生了新的数学和计算工具,并帮助教育学生挑战具有现实世界影响的新领域。一名学生参与该项目的工作。该项目侧重于主要研究领域,目的是使一种新的数据同化工具尽可能对流体动力学和地球物理学的研究人员有用。首先,对新的非线性数据同化算法进行了深入的分析和计算研究,并对其收敛速度进行了仔细的估计。其次,在不可压缩流体Navier-Stokes方程的背景下,利用新算法进行了首次三维仿真,并与前沿数据同化方法进行了详细比较。最后,将该方法扩展到多物理场环境,包括热对流驱动流体和具有磁性的流体。一名学生参与该项目的工作。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Global well-posedness of the velocity–vorticity-Voigt model of the 3D Navier–Stokes equations
3D 纳维斯托克斯方程的速度涡度-Voigt 模型的全局适定性
  • DOI:
    10.1016/j.jde.2018.08.033
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Larios, A;Pei, Y;Rebholz, L
  • 通讯作者:
    Rebholz, L
Efficient Solutions for Nonlocal Diffusion Problems Via Boundary-Adapted Spectral Methods
Approximate continuous data assimilation of the 2D Navier-Stokes equations via the Voigt-regularization with observable data
Continuous data assimilation for the 2D magnetohydrodynamic equations using one component of the velocity and magnetic fields
  • DOI:
    10.3233/asy-171454
  • 发表时间:
    2017-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Biswas;Joshua Hudson;Adam Larios;Yuan Pei
  • 通讯作者:
    A. Biswas;Joshua Hudson;Adam Larios;Yuan Pei
Global in time stability and accuracy of IMEX-FEM data assimilation schemes for Navier–Stokes equations
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adam Larios其他文献

GLOBAL WELL-POSEDNESS FOR THE 2D BOUSSINESQ SYSTEM WITH ANISOTROPIC VISCOSITY AND WITHOUT
具有各向异性粘度和不具有各向异性粘度的 2D BOUSSINESQ 系统的全局适定性
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Adam Larios;E. Lunasin;E. Titi
  • 通讯作者:
    E. Titi
Parameter Recovery and Sensitivity Analysis for the 2D Navier-Stokes Equations Via Continuous Data Assimilation
通过连续数据同化对二维纳维-斯托克斯方程进行参数恢复和灵敏度分析
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Elizabeth Carlson;Joshua Hudson;Adam Larios
  • 通讯作者:
    Adam Larios
Identifying the body force from partial observations of a two-dimensional incompressible velocity field
从二维不可压缩速度场的部分观测中识别体积力
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Aseel Farhat;Adam Larios;Vincent R. Martinez;J. Whitehead
  • 通讯作者:
    J. Whitehead
A Blow-Up Criterion for the 3D Euler Equations Via the Euler-Voigt Inviscid Regularization
基于Euler-Voigt无粘正则化的3D欧拉方程的放大准则
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Adam Larios;E. Titi
  • 通讯作者:
    E. Titi
Application of Continuous Data Assimilation in High-Resolution Ocean Modeling
连续资料同化在高分辨率海洋建模中的应用
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Adam Larios;M. Petersen;Collin Victor
  • 通讯作者:
    Collin Victor

Adam Larios的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adam Larios', 18)}}的其他基金

Collaborative Research: Data Assimilation for Turbulent Flows: Dynamic Model Learning and Solution Capturing
协作研究:湍流数据同化:动态模型学习和解决方案捕获
  • 批准号:
    2206741
  • 财政年份:
    2022
  • 资助金额:
    $ 14.01万
  • 项目类别:
    Standard Grant

相似海外基金

Linear and nonlinear modeling of fundamental theory explaining the prescription system of Kampo (traditional Japanese medicine) formulas based on chemistry and data science
基于化学和数据科学的解释汉方(传统日本医学)处方系统的基础理论的线性和非线性建模
  • 批准号:
    22K06690
  • 财政年份:
    2022
  • 资助金额:
    $ 14.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generalized Linear and Nonlinear Mixed Models for Longitudinal and Spatial Data
纵向和空间数据的广义线性和非线性混合模型
  • 批准号:
    RGPIN-2015-06124
  • 财政年份:
    2019
  • 资助金额:
    $ 14.01万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized Linear and Nonlinear Mixed Models for Longitudinal and Spatial Data
纵向和空间数据的广义线性和非线性混合模型
  • 批准号:
    RGPIN-2015-06124
  • 财政年份:
    2018
  • 资助金额:
    $ 14.01万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized Linear and Nonlinear Mixed Models for Longitudinal and Spatial Data
纵向和空间数据的广义线性和非线性混合模型
  • 批准号:
    RGPIN-2015-06124
  • 财政年份:
    2017
  • 资助金额:
    $ 14.01万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized Linear and Nonlinear Mixed Models for Longitudinal and Spatial Data
纵向和空间数据的广义线性和非线性混合模型
  • 批准号:
    RGPIN-2015-06124
  • 财政年份:
    2016
  • 资助金额:
    $ 14.01万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized Linear and Nonlinear Mixed Models for Longitudinal and Spatial Data
纵向和空间数据的广义线性和非线性混合模型
  • 批准号:
    RGPIN-2015-06124
  • 财政年份:
    2015
  • 资助金额:
    $ 14.01万
  • 项目类别:
    Discovery Grants Program - Individual
AF:Small: Data-Driven Dimension Reduction of Linear and Nonlinear Systems
AF:Small:数据驱动的线性和非线性系统降维
  • 批准号:
    1320866
  • 财政年份:
    2013
  • 资助金额:
    $ 14.01万
  • 项目类别:
    Standard Grant
Mixed linear and nonlinear models for survey data
调查数据的混合线性和非线性模型
  • 批准号:
    42086-1999
  • 财政年份:
    2003
  • 资助金额:
    $ 14.01万
  • 项目类别:
    Discovery Grants Program - Individual
Mixed linear and nonlinear models for survey data
调查数据的混合线性和非线性模型
  • 批准号:
    42086-1999
  • 财政年份:
    2002
  • 资助金额:
    $ 14.01万
  • 项目类别:
    Discovery Grants Program - Individual
Mixed linear and nonlinear models for survey data
调查数据的混合线性和非线性模型
  • 批准号:
    42086-1999
  • 财政年份:
    2000
  • 资助金额:
    $ 14.01万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了