SHF:SMALL: MECAR: Memory-Centric Architecture to Bridge the Gap Between Computing and Memory
SHF:SMALL:MECAR:以内存为中心的架构,弥合计算和内存之间的差距
基本信息
- 批准号:1719160
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-15 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Traditional computer systems usually follow the so-called classic Von Neumann architecture, with separated processing units (such as CPUs and GPUs) to do computing and memory units for data storage. The increasing gap between the computing of processor and the memory has created the memory wall problem in which the memory subsystem is becoming the bottleneck of the entire computing system. As technology scales, data movement between the processing units (PUs) and the memory is becoming one of the most critical performance and energy bottlenecks in various computer systems, ranging from cloud servers to end-user devices. As we enter the era of big data, many emerging data-intensive workloads become pervasive and mandate very high bandwidth and heavy data movement between the computing units and the memory. The fundamental goal of this project is to advance the trend of bridging the gap between computing and memory, with an application-driven approach. By leveraging the PI's prior extensive research on 3D-stacked memory and non-volatile memory architecture, the PI proposes to focus on (1) designing memory-centric processing unit (PU) architecture with massive GB on-chip/on-package memory integrated with computing units; (2) investigating new processing-in-memory(PIM) memory architecture designs with both DRAM and emerging NVM; (3) and co-design and co-optimization of both memory-centric PU architecture and NDC/PIM memory architecture, with the emerging data-intensive applications such as neural computing and graph analytics as application driver to guide the architecture optimization. The success of this research will have enormous economic and social benefits as broader impact. The research will provide the design guidelines for enabling future computing systems beyond the state-of-the-art, ranging from high performance exascale computing to low power mobile systems. Consequently, it will enhance nearly every digital device available today from consumer to enterprise electronics. It can also spawn new applications involving the computation on the exascale of data, e.g. data mining, machine learning, bio-informatics, etc. It is expected that this project will serve as a catalyst to accelerate the adoption of data-intensive and memory-centric technologies in future computer systems and applications from architecture and system design perspectives. The PI has extensive industrial ties with summer internships planned, which will be invaluable for broadening the knowledge and skills of the students. The PI will also strive to educate a broad audience on the emerging technologies through regular and online classes. Publication/lecture notes will be released on public websites to promote the broader dissemination of scientific knowledge.
传统的计算机系统通常遵循所谓的经典冯·诺伊曼(Von Neumann)体系结构,并带有单独的处理单元(例如CPU和GPU)来进行计算和存储单元以进行数据存储。处理器的计算与内存之间的差距不断增加,从而创造了内存子系统成为整个计算系统的瓶颈的内存壁问题。随着技术的扩展,处理单元(PU)和内存之间的数据移动正在成为各种计算机系统中最关键的性能和能量瓶颈之一,从云服务器到最终用户设备。当我们进入大数据时代时,许多新兴的数据密集型工作负载变得普遍,并且在计算单元和内存之间的较高的带宽和重型数据运动。该项目的基本目标是通过以应用程序驱动的方法来促进计算和内存之间差距的趋势。通过利用PI对3D堆叠内存和非易失性内存体系结构的广泛研究,PI提案专注于(1)设计以内存为中心的加工单元(PU)架构,并具有大量的GB芯片/芯片/包上的内存存储器,该架构与计算单位集成了; (2)研究使用DRAM和新兴NVM的新型过程(PIM)内存架构设计; (3)以及以内存为中心的PU体系结构和NDC/PIM内存体系结构的共同设计和共选,以及新兴的数据密集型应用程序(例如神经计算和图形分析)作为应用程序驱动程序,以指导体系结构优化。这项研究的成功将带来巨大的经济和社会利益,这是更广泛的影响。这项研究将提供设计指南,以实现最先进的未来计算系统,从高性能Exascale计算到低功率移动系统。因此,它将增强从消费者到企业电子产品的今天几乎所有可用的数字设备。它还可以产生涉及数据外部计算的新应用程序,例如数据挖掘,机器学习,生物信息学等。预计该项目将作为催化剂加速从建筑和系统设计的角度来加速未来计算机系统和应用程序中数据密集型和以内存为中心的技术。 PI与计划的暑期实习有着广泛的工业关系,这对于扩大学生的知识和技能是无价的。 PI还将努力通过常规和在线课程对新兴技术进行教育。出版/讲义将在公共网站上发布,以促进更广泛的科学知识传播。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Survey of Accelerator Architectures for Deep Neural Networks
- DOI:10.1016/j.eng.2020.01.007
- 发表时间:2020-03-01
- 期刊:
- 影响因子:12.8
- 作者:Chen, Yiran;Xie, Yuan;Tang, Tianqi
- 通讯作者:Tang, Tianqi
iPIM: Programmable In-Memory Image Processing Accelerator Using Near-Bank Architecture
- DOI:10.1109/isca45697.2020.00071
- 发表时间:2020-05
- 期刊:
- 影响因子:0
- 作者:P. Gu;Xinfeng Xie;Yufei Ding;Guoyang Chen;Weifeng Zhang;Dimin Niu;Yuan Xie
- 通讯作者:P. Gu;Xinfeng Xie;Yufei Ding;Guoyang Chen;Weifeng Zhang;Dimin Niu;Yuan Xie
Timely: Pushing Data Movements And Interfaces In Pim Accelerators Towards Local And In Time Domain
- DOI:10.1109/isca45697.2020.00073
- 发表时间:2020-05
- 期刊:
- 影响因子:0
- 作者:Weitao Li;Pengfei Xu;Yang Zhao;Haitong Li;Yuan Xie;Yingyan Lin
- 通讯作者:Weitao Li;Pengfei Xu;Yang Zhao;Haitong Li;Yuan Xie;Yingyan Lin
DUET: Boosting Deep Neural Network Efficiency on Dual-Module Architecture
- DOI:10.1109/micro50266.2020.00066
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Liu Liu-Liu;Zheng Qu;Lei Deng;Fengbin Tu;Shuangchen Li;Xing Hu;Zhenyu Gu;Yufei Ding;Yuan Xie
- 通讯作者:Liu Liu-Liu;Zheng Qu;Lei Deng;Fengbin Tu;Shuangchen Li;Xing Hu;Zhenyu Gu;Yufei Ding;Yuan Xie
Boosting Deep Neural Network Efficiency with Dual-Module Inference
- DOI:
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Liu Liu-Liu;Lei Deng;Zhaodong Chen;Yuke Wang;Shuangchen Li;Jingwei Zhang;Yihua Yang;Zhenyu Gu;Yufei Ding;Yuan Xie
- 通讯作者:Liu Liu-Liu;Lei Deng;Zhaodong Chen;Yuke Wang;Shuangchen Li;Jingwei Zhang;Yihua Yang;Zhenyu Gu;Yufei Ding;Yuan Xie
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yufei Ding其他文献
GLORE: generalized loop redundancy elimination upon LER-notation
GLORE:基于 LER 表示法的广义循环冗余消除
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Yufei Ding;Xipeng Shen - 通讯作者:
Xipeng Shen
Developments of Materials for Nonenzymatic Biosensing Applications
- DOI:
10.54097/hset.v73i.14061 - 发表时间:
2023-11 - 期刊:
- 影响因子:0
- 作者:
Yufei Ding - 通讯作者:
Yufei Ding
S-QGPU: Shared Quantum Gate Processing Unit for Distributed Quantum Computing
S-QGPU:用于分布式量子计算的共享量子门处理单元
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Shengwang Du;Yufei Ding;Chunming Qiao - 通讯作者:
Chunming Qiao
ZEN: An Optimizing Compiler for Verifiable, Zero-Knowledge Neural Network Inferences
ZEN:用于可验证的零知识神经网络推理的优化编译器
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Boyuan Feng;Lianke Qin;Zhenfei Zhang;Yufei Ding;Shumo Chu - 通讯作者:
Shumo Chu
Optimal Synthesis of Stabilizer Codes via MaxSAT
通过 MaxSAT 稳定器代码的优化合成
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Keyi Yin;Hezi Zhang;Yunong Shi;T. Humble;A. Li;Yufei Ding - 通讯作者:
Yufei Ding
Yufei Ding的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yufei Ding', 18)}}的其他基金
CAREER: FET: A Top-down Compilation Infrastructure for Optimization and Debugging in the Noisy Intermediate Scale Quantum (NISQ) era
职业:FET:用于噪声中级量子 (NISQ) 时代优化和调试的自上而下的编译基础设施
- 批准号:
2421059 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
FET: NSF Workshop on Software-Hardware Co-design for Quantum Computing
FET:NSF 量子计算软硬件协同设计研讨会
- 批准号:
2138437 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CAREER: FET: A Top-down Compilation Infrastructure for Optimization and Debugging in the Noisy Intermediate Scale Quantum (NISQ) era
职业:FET:用于噪声中级量子 (NISQ) 时代优化和调试的自上而下的编译基础设施
- 批准号:
2048144 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
相似国自然基金
靶向Treg-FOXP3小分子抑制剂的筛选及其在肺癌免疫治疗中的作用和机制研究
- 批准号:32370966
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
化学小分子激活YAP诱导染色质可塑性促进心脏祖细胞重编程的表观遗传机制研究
- 批准号:82304478
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向小胶质细胞的仿生甘草酸纳米颗粒构建及作用机制研究:脓毒症相关性脑病的治疗新策略
- 批准号:82302422
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
HMGB1/TLR4/Cathepsin B途径介导的小胶质细胞焦亡在新生大鼠缺氧缺血脑病中的作用与机制
- 批准号:82371712
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
小分子无半胱氨酸蛋白调控生防真菌杀虫活性的作用与机理
- 批准号:32372613
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Powering Small Craft with a Novel Ammonia Engine
用新型氨发动机为小型船只提供动力
- 批准号:
10099896 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Collaborative R&D
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
- 批准号:
AH/X011747/1 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Research Grant
人工知能に基づく非線形高次元小標本データ解析とその社会的応用
基于人工智能的非线性高维小样本数据分析及其社会应用
- 批准号:
24K14847 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fragment to small molecule hit discovery targeting Mycobacterium tuberculosis FtsZ
针对结核分枝杆菌 FtsZ 的小分子片段发现
- 批准号:
MR/Z503757/1 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Research Grant
Bacteriophage control of host cell DNA transactions by small ORF proteins
噬菌体通过小 ORF 蛋白控制宿主细胞 DNA 交易
- 批准号:
BB/Y004426/1 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Research Grant