EAGER: Biomanufacturing: Metabolic cell process engineering (MCPE)-based stirred-tank bioproduction of large quantities of human T cells
EAGER:生物制造:基于代谢细胞过程工程 (MCPE) 的大量人类 T 细胞的搅拌罐生物生产
基本信息
- 批准号:1719625
- 负责人:
- 金额:$ 29.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-02-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1645031-LiuIn 2015, cancer caused at least 0.5 million deaths and 1.5 million new cases were diagnosed in the US. The adoptive transfer of large numbers of tumor-infiltrating T cells or genetically engineered T cells with cancer-targeting receptors has shown tremendous promise for eradicating tumors in clinical trials. The existing methods to manufacture large quantities of such human T cells, however, have severe limitations of low efficiency, inconsistency and lack of sufficient quality control. This EAGER proposal aims to develop a novel human T cell biomanufacturing platform for large-scale, robust, and high-quality cellular production. The accomplishment of this study will provide not only the proof-of-concept but also the ready-to-use bioproduction platform for new means of T cell expansion for clinical immune cancer therapy. The novel technology employed in the rational production process engineering will also be able to provide guidelines and apply easily to the manufacturing of other therapeutic cells. Whereas the results and knowledge obtained in this study will be useful for both the biopharmaceutical industry and academic research, all cancer patients may benefit from the products of this research project. The primary goal of this proposal is to develop an entirely new, metabolic cell process engineering (MCPE)-based, cellular biomanufacturing platform using stirred-tank bioreactor to produce reliable and reproducible large quantities of human T cells for immune cancer therapy, aiming to effectively produce more than 2,000 million T cells with high quality. The traditional T cell biomanufacturing presents several weaknesses: 1) low efficiency of mass transfer that often results in heterologous cellular metabolism, cell viability and product quality; 2) ineffective process parameter control that causes low robustness, reliability and scalability; and 3) lack of critical quality attributes in the early and middle stages of process development, limiting the application of quality by design. This project focuses on developing an innovative stirred-tank-based cellular biomanufacturing platform to produce reliable and reproducible large quantities of human T cells (or CAR T cells) for immune cancer therapy. Supported by Design of Experiment (DoE), proteomics and metabolomics will be applied to evaluate and determine the key bioproduction process parameters (such as stirred-tank parameters, media, supplements, etc.) to control T cell metabolism and cell growth. The oxygen transfer coefficient-based scale-up strategy will be developed to guide large-scale manufacturing of T cells, which will be validated using small- and medium- size tank bioreactors with scale-up factor of 10. In addition, at multiple key steps of the cellular bioproduction, the T cell quality control will be established via monitoring and evaluating cellular density, viability, T cell surface markers and functions. The existing T cell biomanufacturing in flask, LifeCell bag or Wave bag is limited by the weaknesses of lot-to-lot variation, heterologous product quality during scale-up, and low reproducibility. The proposed approach, i.e. MCPE-based fed-batch T cell production in stirred-tank bioreactor, that enables homogenous cell expansion, high cell density, high viability and good product quality in large-scale T cell manufacturing would be a major methodological advance for the field. Moreover, the systems biology approach will help advance the knowledge of host cell protein expression and intracellular metabolite profiling of human T cells under various culture conditions. In addition, the liquid activators in this proposed strategy will avoid heterologous suspension culture, improve cell growth efficiency, simplify manufacturing operation and reduce production cost. The critical scale-up factors learned from this application will guide future large-scale T cell biomanufacturing. Finally, the quality control at multiple stages of the process development will help identify potential product quality and process scale-up pain points during T cell bioproduction. To the PI's best knowledge, this is the first effort to rationally develop T cell bioproduction process via understanding the interaction between cellular metabolism and process parameters.
1645031-2015年,癌症在美国造成至少50万人死亡,150万新病例被诊断出来。大量肿瘤浸润性T细胞或具有癌症靶向受体的基因工程T细胞的过继转移在临床试验中显示出根除肿瘤的巨大前景。然而,现有的生产大量这种人T细胞的方法具有效率低、不一致和缺乏足够的质量控制的严重局限性。EAGER的这项提案旨在开发一种新型的人类T细胞生物制造平台,用于大规模,稳健和高质量的细胞生产。这项研究的完成不仅将为临床免疫癌症治疗的T细胞扩增新方法提供概念验证,而且还将提供现成的生物生产平台。在合理的生产工艺工程中采用的新技术也将能够提供指导并易于应用于其他治疗性细胞的制造。尽管本研究获得的结果和知识对生物制药行业和学术研究都很有用,但所有癌症患者都可能从本研究项目的产品中受益。该提案的主要目标是开发一种全新的、基于代谢细胞过程工程(MCPE)的细胞生物制造平台,使用搅拌罐生物反应器生产可靠且可重复的大量人类T细胞用于免疫癌症治疗,旨在有效生产超过20亿个高质量的T细胞。传统的T细胞生物制造存在几个缺点:1)质量传递效率低,通常导致异源细胞代谢,细胞活力和产品质量; 2)工艺参数控制无效,导致鲁棒性,可靠性和可扩展性低; 3)在工艺开发的早期和中期阶段缺乏关键质量属性,限制了质量设计的应用。该项目的重点是开发一种创新的基于搅拌罐的细胞生物制造平台,以生产可靠和可重复的大量人类T细胞(或CAR T细胞)用于免疫癌症治疗。在实验设计(DoE)的支持下,蛋白质组学和代谢组学将用于评估和确定关键的生物生产工艺参数(如搅拌罐参数、培养基、补充剂等)。来控制T细胞代谢和细胞生长。将开发基于氧转移系数的规模扩大策略,以指导T细胞的大规模生产,将使用规模扩大因子为10的中小型罐式生物反应器进行验证。此外,在细胞生物生产的多个关键步骤中,将通过监测和评价细胞密度、活力、T细胞表面标志物和功能来建立T细胞质量控制。现有的T细胞在烧瓶、LifeCell袋或Wave袋中的生物制造受到批间差异、规模扩大期间的异源产品质量和低重现性的弱点的限制。所提出的方法,即在搅拌罐生物反应器中基于MCPE的补料分批T细胞生产,能够在大规模T细胞制造中实现均匀的细胞扩增、高细胞密度、高活力和良好的产品质量,将是该领域的主要方法学进步。此外,系统生物学方法将有助于推进宿主细胞蛋白质表达和人类T细胞在各种培养条件下的细胞内代谢产物谱的知识。此外,该策略中的液体活化剂将避免异源悬浮培养,提高细胞生长效率,简化生产操作并降低生产成本。从该应用中了解到的关键放大因素将指导未来的大规模T细胞生物制造。最后,工艺开发多个阶段的质量控制将有助于确定T细胞生物生产过程中潜在的产品质量和工艺放大痛点。据PI所知,这是通过了解细胞代谢和工艺参数之间的相互作用来合理开发T细胞生物生产工艺的首次尝试。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaoguang Liu其他文献
15 alpha-Hydroxylation of a steroid (13-ethyl-gon-4-en-3,17-dione) by Penicillium raistrickii in an ionic liquid/aqueous biphasic system
离子液体/水双相系统中青霉对类固醇(13-乙基-gon-4-en-3,17-二酮)的 15 α-羟基化
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:2.7
- 作者:
Boyuan Hua;Na Wang;Xiaoguang Liu;Lu, Fuping - 通讯作者:
Lu, Fuping
A New PoW Consensus of Blockchain Based on Legendre Sequence
基于勒让德序列的区块链新PoW共识
- DOI:
10.1109/blockchain55522.2022.00033 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Ye Yuan;Yiwen Zhao;Ming Su;Gang Wang;Xiaoguang Liu - 通讯作者:
Xiaoguang Liu
Distinct superconducting properties and hydrostatic pressure effects in 2D α- and β-Mo2C crystal sheets
二维 α- 和 β-Mo2C 晶体片中独特的超导特性和静水压力效应
- DOI:
10.1038/s41427-020-00242-3 - 发表时间:
2020-09 - 期刊:
- 影响因子:9.7
- 作者:
Yunjie Fan;Chuan Xu;Xiang Liu;Chao Ma;Yuewei Yin;Hui-Ming Cheng;Wencai Ren;Xiaoguang Liu - 通讯作者:
Xiaoguang Liu
Experimental testing and modeling of partial nitrification at different temperatures
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Xiaoguang Liu - 通讯作者:
Xiaoguang Liu
Resource-Efficient Index Shard Replication in Large Scale Search Engines
大规模搜索引擎中资源高效的索引分片复制
- DOI:
10.1109/tpds.2019.2924423 - 发表时间:
2019-12 - 期刊:
- 影响因子:5.3
- 作者:
Yusen Li;Xueyan Tang;Wentong Cai;Jiancong Tong;Xiaoguang Liu;Gang Wang - 通讯作者:
Gang Wang
Xiaoguang Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaoguang Liu', 18)}}的其他基金
EAGER: Biomanufacturing: Metabolic cell process engineering (MCPE)-based stirred-tank bioproduction of large quantities of human T cells
EAGER:生物制造:基于代谢细胞过程工程 (MCPE) 的大量人类 T 细胞的搅拌罐生物生产
- 批准号:
1645031 - 财政年份:2017
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Reconfigurable Bandpass Sampling Receivers for Software-Defined Radio Applications
适用于软件定义无线电应用的可重新配置带通采样接收器
- 批准号:
1444086 - 财政年份:2014
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
BRIGE: Metabolic Cell-Process Engineering (MCPE) for High Biobutanol Production by Clostridium tyrobutyricum
BRIGE:酪丁酸梭菌高生物丁醇生产的代谢细胞过程工程 (MCPE)
- 批准号:
1342390 - 财政年份:2014
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
相似海外基金
Identification and impact of polymers on stem cell products in an automated biomanufacturing platform
自动化生物制造平台中聚合物对干细胞产品的识别和影响
- 批准号:
10089013 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Collaborative R&D
FMRG: Bio: Enabling Technologies for Biomanufacturing Extracellular Vesicle-Based Therapeutics
FMRG:生物:基于细胞外囊泡的生物制造治疗的使能技术
- 批准号:
2328276 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track M: A new biomanufacturing process for making precipitated calcium carbonate and plant-based compounds that support human health
NSF Convergence Accelerator Track M:一种新的生物制造工艺,用于制造支持人类健康的沉淀碳酸钙和植物基化合物
- 批准号:
2344228 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
FMSG: Eco: Microalgae-based Biomanufacturing of Methionine for Organic Poultry Diets
FMSG:Eco:用于有机家禽日粮的基于微藻的蛋氨酸生物制造
- 批准号:
2328159 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Cost-Effective, AI-driven Automation Technology for Cell Culture Monitoring: Boosting Efficiency and Sustainability in Industrial Biomanufacturing and Streamlining Supply Chains
用于细胞培养监测的经济高效、人工智能驱动的自动化技术:提高工业生物制造的效率和可持续性并简化供应链
- 批准号:
10104748 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Launchpad
Smart biomanufacturing for genomic medicines
基因组药物的智能生物制造
- 批准号:
EP/X025446/1 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Research Grant
A synthetic yeast methanotroph for methane based sustainable biomanufacturing - SynYeast
用于基于甲烷的可持续生物制造的合成酵母甲烷氧化菌 - SynYeast
- 批准号:
EP/Z000734/1 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Fellowship
HSI Pilot Project: Applying a Research-Based Learning Approach to Enhance Biomanufacturing Skills
HSI 试点项目:应用基于研究的学习方法来提高生物制造技能
- 批准号:
2345033 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Development of BioMara’s sustainable biorefinery for biomanufacturing new products from residual ‘waste’ streams and sustainability improvements
开发 BioMara 的可持续生物精炼厂,利用残余“废物”流生物制造新产品并提高可持续性
- 批准号:
10068120 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Collaborative R&D
Designing Nonconventional Hosts for Large-Scale Biomanufacturing Applications
为大规模生物制造应用设计非常规主机
- 批准号:
2868572 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Studentship