A Novel Regularization-Based Computational Framework for State-Constrained Optimal Control

一种基于正则化的新型状态约束最优控制计算框架

基本信息

  • 批准号:
    1720067
  • 负责人:
  • 金额:
    $ 13.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

The research plan for this project is motivated by a broad range of practical applications. A relevant example is in the localized heat treatment of cancer in which the intent is to heat the tumor cells, but at the same time assure that nearby healthy cells are not heated, and hence not damaged. A goal of this kind is called an optimal control problem with pointwise state constraints. The principal investigators will develop novel computational models for the solution of these control problems. Their research is based on the cross-fertilization of ideas from diverse disciplines of mathematics and application domains, and has strong potential for impact in engineering domains such as the optimization of the process of producing hot steel profiles without the generation of cracks. The research team will also integrate their research in the university educational program in the mathematical sciences and will produce basic software that can be made available for solution of other significant applications that fall into the same modeling framework. The principal investigators aim to develop a novel regularization approach for the solution of pointwise constrained optimal control problems. Such problems are a focus of considerable recent research and pose serious challenges for finding reliable solutions. One of the main issues is that the associated Lagrange multipliers are Radon measures so that the control has low regularity. This causes adverse effects at the analytical level when obtaining optimality conditions for the control problem, and at the numerical level when performing discretization. The lack of regularity can be attributed to the fact that the underlying ordering cone has an empty interior. Consequently, no general Karush-Kuhn-Tucker theory is available. In fact, the failure of a Slater-type constraint qualification is a common hurdle in numerous branches of applied mathematics including optimal control, inverse problems, non-smooth optimization, and variational inequalities. Conical regularization provides a unified framework to study optimization problems for which a Slater-type constraint qualification fails to hold due to the empty interior of the ordering cone associated with the inequality constraints. The investigators plan to develop new error estimates for the conical regularization for optimal control of partial differential equations and variational inequalities with pointwise state constraints. The project will test the new theoretical results for Nash equilibrium problems, linear elasticity, and supply chains on networks. The project also has an educational impact in the training of graduate students. The investigators will integrate education with research and design courses to teach state-of-the-art techniques on optimal control.
该项目的研究计划是由广泛的实际应用的动机。一个相关的例子是癌症的局部热治疗,其目的是加热肿瘤细胞,但同时确保附近的健康细胞不被加热,因此不被损坏。这类目标称为具有逐点状态约束的最优控制问题。主要研究人员将开发新的计算模型来解决这些控制问题。他们的研究是基于数学和应用领域的不同学科的思想的交叉施肥,并在工程领域具有很强的影响潜力,例如优化生产热钢型材的过程而不产生裂纹。研究团队还将把他们的研究整合到数学科学的大学教育计划中,并将制作基本软件,用于解决属于同一建模框架的其他重要应用。主要研究人员的目标是开发一种新的正则化方法的逐点约束最优控制问题的解决方案。这些问题是最近大量研究的焦点,并对找到可靠的解决方案提出了严峻的挑战。其中一个主要问题是,相关的拉格朗日乘子是氡措施,使控制具有较低的规则性。这会导致不利的影响,在分析层面上获得最优条件的控制问题,并在数值层面上进行离散化时。 缺乏规律性可以归因于下面的有序锥有一个空的内部。因此,没有普遍的Karush-Kuhn-Tucker理论。事实上,Slater型约束条件的失效是应用数学的许多分支中的常见障碍,包括最优控制、反问题、非光滑优化和变分不等式。圆锥正则化提供了一个统一的框架来研究最优化问题,Slater型约束资格由于与不等式约束相关联的有序锥的空内部而无法保持。研究人员计划为具有逐点状态约束的偏微分方程和变分不等式的最优控制的圆锥正则化开发新的误差估计。该项目将测试纳什均衡问题,线性弹性和网络上的供应链的新理论成果。该项目还对研究生的培训产生了教育影响。研究人员将把教育与研究和设计课程结合起来,教授最先进的最优控制技术。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Contingent derivatives of the set-valued solution map of a noncoercive saddle point problem. A cross-fertilization between variational analysis and inverse problems
非强制鞍点问题的集值解图的条件导数。
  • DOI:
    10.23952/jnva.4.2020.1.09
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Jadamba, Baasansuren;Khan, Akhtar A;Sama, Miguel;Tammer, Christiane
  • 通讯作者:
    Tammer, Christiane
Stable Conical Regularization by Constructible Dilating Cones with an Application to $L^{p}$-constrained Optimization Problems
通过可构造扩张锥实现稳定圆锥正则化及其在 $L^{p}$ 约束优化问题中的应用
  • DOI:
    10.11650/tjm/181103
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0.4
  • 作者:
    Jadamba, Baasansuren;Khan, Akhtar A.;Sama, Miguel
  • 通讯作者:
    Sama, Miguel
Evolutionary Quasi-Variational-Hemivariational Inequalities I: Existence and Optimal Control
A Variational Inequality Based Stochastic Approximation for Inverse Problems in Stochastic Partial Differential Equations
随机偏微分方程反问题的基于变分不等式的随机逼近
Inverse Problems in Variational Inequalities by Minimizing Energy
通过最小化能量求解变分不等式的反问题
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Baasansuren Jadamba其他文献

On the Modeling of Some Environmental Games with Uncertain Data

Baasansuren Jadamba的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Regularization for Deep Learning based Phenotype-to-Genotype Mapping
基于深度学习的表型到基因型映射的正则化
  • 批准号:
    551572-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 13.5万
  • 项目类别:
    University Undergraduate Student Research Awards
Graph-Based Regularization Techniques and Their Applications
基于图的正则化技术及其应用
  • 批准号:
    1941197
  • 财政年份:
    2019
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Graph-Based Regularization Techniques and Their Applications
基于图的正则化技术及其应用
  • 批准号:
    1818374
  • 财政年份:
    2018
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Study on machine learning approaches for heterogeneous biological data based on mixing regularization models
基于混合正则化模型的异构生物数据机器学习方法研究
  • 批准号:
    17K00407
  • 财政年份:
    2017
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Regularization-based Algorithms for Partially Observable Sequential Decision-Making Problems
用于部分可观察序列决策问题的基于正则化的算法
  • 批准号:
    421362-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Postdoctoral Fellowships
Regularization-based Algorithms for Partially Observable Sequential Decision-Making Problems
用于部分可观察序列决策问题的基于正则化的算法
  • 批准号:
    421362-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Postdoctoral Fellowships
Numerical investigation of dictionary-based regularization for inverse problems and approximation problems on spheres and balls - with applications to seismic tomography and high-dimensional geophysical modelling
基于字典的正则化球体反演问题和近似问题的数值研究 - 及其在地震层析成像和高维地球物理建模中的应用
  • 批准号:
    226407518
  • 财政年份:
    2012
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Research Grants
Machine learning based on sparsity-inducing regularization for matrices
基于稀疏诱导矩阵正则化的机器学习
  • 批准号:
    22700138
  • 财政年份:
    2010
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Compression of 3D MRI image data based upon regularization theory and the fast cross section display
基于正则化理论的3D MRI图像数据压缩及快速断面显示
  • 批准号:
    11650380
  • 财政年份:
    1999
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Deep-Learning Based Regularization of Inverse Problems
基于深度学习的反问题正则化
  • 批准号:
    464101359
  • 财政年份:
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Priority Programmes
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了