Collaborative Research: A Posteriori Error Analysis for Complex Models with Applications to Efficient Numerical Solution and Uncertainty Quantification

协作研究:复杂模型的后验误差分析及其在高效数值求解和不确定性量化中的应用

基本信息

  • 批准号:
    1720402
  • 负责人:
  • 金额:
    $ 10.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

Many scientific and engineering problems of importance to the nation's infrastructure and defense are concerned with multi-physics systems in which multiple physical processes interact in complex ways. An important example is the flow of a liquid transporting reacting chemicals in which the reaction affects the fluid properties of the liquid. Such reacting flows arise in applications ranging from biological systems to combustion processes associated with energy use. In general, the complexity of multi-physics systems prevents direct experimental observation of crucial features. Thus their study depends critically on computing approximate solutions of mathematical models describing the processes and their interactions. However, such simulations strain the computational capabilities of the most powerful computers and consequently, computational errors in the approximations are always significant and may be overwhelming. Over two decades, the project investigators have developed a systematic approach for producing accurate computational estimates of the error of approximate solutions of models of multi-physics systems. In this project, the investigators explore the use of error estimates from this approach to guide the efficient use of computational resources in order to maximize the fidelity of approximate solutions of multi-physics systems. They also apply the error estimates to accurately quantify the uncertainty in predictions of behavior of multi-physics systems based on the approximate solutions of models. The results of this project will enhance the ability of the nation's engineers and scientists to investigate and predict the behavior of complex physical systems important to the nation's security and infrastructure. This project tackles critical problems associated with using sophisticated cutting-edge multi-discretization numerical methods for multiscale, multiphysics models to pursue scientific inference and engineering design. The research is based on a posteriori error analysis for multi-physics, multi-discretization problems that quantifies the effects of a wide variety of discretization steps through the use of adjoint problems and computable residuals. The primary focus of the project is twofold: (1) Developing and analyzing methods for using accurate error estimates to guide discretization choices in order to achieve a desired accuracy at roughly minimal computational cost; and (2) Investigating how to extend accurate error estimation methods to address uncertainty quantification for multiphysics systems, where 'discretization' includes the sampling of a random process and the overall error is a combination of discretization and sampling errors. The investigators pursue the development of novel multi-stage approaches to the construction of efficient numerical solutions and the extension of a posteriori error analysis to statistical computations. The project also involves the extension of the theory of a posteriori error analysis to hyperbolic problems and nonstandard quantities of interest.
许多对国家基础设施和国防具有重要意义的科学和工程问题都涉及多物理场系统,其中多个物理过程以复杂的方式相互作用。一个重要的例子是液体输送反应化学物质的流动,其中的反应会影响液体的流体性质。这种反应流出现在从生物系统到与能源使用相关的燃烧过程的应用中。一般来说,多物理场系统的复杂性阻碍了对关键特征的直接实验观察。因此,他们的研究主要依赖于计算描述过程及其相互作用的数学模型的近似解。然而,这样的模拟使最强大的计算机的计算能力紧张,因此,近似中的计算误差总是显著的,并且可能是压倒性的。二十多年来,项目研究人员已经开发出一种系统的方法,用于对多物理场系统模型的近似解的误差进行精确的计算估计。在这个项目中,研究人员探索使用这种方法的误差估计来指导有效利用计算资源,以最大限度地提高多物理场系统近似解的保真度。他们还应用误差估计来精确量化基于模型近似解的多物理场系统行为预测中的不确定性。该项目的结果将提高国家工程师和科学家调查和预测对国家安全和基础设施重要的复杂物理系统行为的能力。该项目解决了与使用先进的多尺度、多物理场模型的尖端多离散化数值方法相关的关键问题,以追求科学推理和工程设计。该研究基于对多物理场、多离散化问题的后验误差分析,通过使用伴随问题和可计算残差来量化各种离散化步骤的影响。该项目的主要重点是双重的:(1)开发和分析方法,使用准确的误差估计来指导离散化选择,以便在大致最小的计算成本下达到所需的精度;(2)研究如何扩展准确的误差估计方法,以解决多物理场系统的不确定性量化问题,其中“离散化”包括随机过程的抽样,总体误差是离散化和抽样误差的结合。研究人员致力于开发新的多阶段方法来构建有效的数值解,并将后验误差分析扩展到统计计算。该项目还涉及将后验误差分析理论扩展到双曲问题和感兴趣的非标准量。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Least-Squares Finite Element Reduced Basis Method
最小二乘有限元降基法
  • DOI:
    10.1137/20m1323552
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Chaudhry, Jehanzeb H.;Olson, Luke N.;Sentz, Peter
  • 通讯作者:
    Sentz, Peter
A posteriori analysis of an IMEX entropy-viscosity formulation for hyperbolic conservation laws with dissipation
具有耗散的双曲守恒定律的 IMEX 熵粘度公式的后验分析
  • DOI:
    10.1016/j.apnum.2018.08.010
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Chaudhry, Jehanzeb H.;Shadid, John N.;Wildey, Timothy
  • 通讯作者:
    Wildey, Timothy
A posteriori error analysis for Schwarz overlapping domain decomposition methods
  • DOI:
    10.1007/s10543-021-00864-1
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    J. Chaudhry;D. Estep;S. Tavener
  • 通讯作者:
    J. Chaudhry;D. Estep;S. Tavener
Error estimation and uncertainty quantification for first time to a threshold value
首次达到阈值的误差估计和不确定性量化
  • DOI:
    10.1007/s10543-020-00825-0
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Chaudhry, Jehanzeb H.;Estep, Donald;Stevens, Zachary;Tavener, Simon J.
  • 通讯作者:
    Tavener, Simon J.
An A Posteriori Error Analysis for the Equations of Stationary Incompressible Magnetohydrodynamics
定态不可压缩磁流体动力学方程的后验误差分析
  • DOI:
    10.1137/20m1342975
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Chaudhry, Jehanzeb H.;Rappaport, Ari E.;Shadid, John N.
  • 通讯作者:
    Shadid, John N.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jehanzeb Chaudhary其他文献

Jehanzeb Chaudhary的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
  • 批准号:
    2313120
  • 财政年份:
    2024
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Standard Grant
NSF Engines Development Award: Utilizing space research, development and manufacturing to improve the human condition (OH)
NSF 发动机发展奖:利用太空研究、开发和制造来改善人类状况(OH)
  • 批准号:
    2314750
  • 财政年份:
    2024
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Cooperative Agreement
Doctoral Dissertation Research: How New Legal Doctrine Shapes Human-Environment Relations
博士论文研究:新法律学说如何塑造人类与环境的关系
  • 批准号:
    2315219
  • 财政年份:
    2024
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
  • 批准号:
    2335762
  • 财政年份:
    2024
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335802
  • 财政年份:
    2024
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335801
  • 财政年份:
    2024
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Holocene biogeochemical evolution of Earth's largest lake system
合作研究:地球最大湖泊系统的全新世生物地球化学演化
  • 批准号:
    2336132
  • 财政年份:
    2024
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Standard Grant
CyberCorps Scholarship for Service: Building Research-minded Cyber Leaders
Cyber​​Corps 服务奖学金:培养具有研究意识的网络领导者
  • 批准号:
    2336409
  • 财政年份:
    2024
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了