Collaborative Research: A Posteriori Error Analysis for Complex Models with Applications to Efficient Numerical Solution and Uncertainty Quantification
协作研究:复杂模型的后验误差分析及其在高效数值求解和不确定性量化中的应用
基本信息
- 批准号:1720402
- 负责人:
- 金额:$ 10.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many scientific and engineering problems of importance to the nation's infrastructure and defense are concerned with multi-physics systems in which multiple physical processes interact in complex ways. An important example is the flow of a liquid transporting reacting chemicals in which the reaction affects the fluid properties of the liquid. Such reacting flows arise in applications ranging from biological systems to combustion processes associated with energy use. In general, the complexity of multi-physics systems prevents direct experimental observation of crucial features. Thus their study depends critically on computing approximate solutions of mathematical models describing the processes and their interactions. However, such simulations strain the computational capabilities of the most powerful computers and consequently, computational errors in the approximations are always significant and may be overwhelming. Over two decades, the project investigators have developed a systematic approach for producing accurate computational estimates of the error of approximate solutions of models of multi-physics systems. In this project, the investigators explore the use of error estimates from this approach to guide the efficient use of computational resources in order to maximize the fidelity of approximate solutions of multi-physics systems. They also apply the error estimates to accurately quantify the uncertainty in predictions of behavior of multi-physics systems based on the approximate solutions of models. The results of this project will enhance the ability of the nation's engineers and scientists to investigate and predict the behavior of complex physical systems important to the nation's security and infrastructure. This project tackles critical problems associated with using sophisticated cutting-edge multi-discretization numerical methods for multiscale, multiphysics models to pursue scientific inference and engineering design. The research is based on a posteriori error analysis for multi-physics, multi-discretization problems that quantifies the effects of a wide variety of discretization steps through the use of adjoint problems and computable residuals. The primary focus of the project is twofold: (1) Developing and analyzing methods for using accurate error estimates to guide discretization choices in order to achieve a desired accuracy at roughly minimal computational cost; and (2) Investigating how to extend accurate error estimation methods to address uncertainty quantification for multiphysics systems, where 'discretization' includes the sampling of a random process and the overall error is a combination of discretization and sampling errors. The investigators pursue the development of novel multi-stage approaches to the construction of efficient numerical solutions and the extension of a posteriori error analysis to statistical computations. The project also involves the extension of the theory of a posteriori error analysis to hyperbolic problems and nonstandard quantities of interest.
许多对国家基础设施和国防具有重要意义的科学和工程问题与多物理系统有关,在这些系统中,多个物理过程以复杂的方式相互作用。一个重要的例子是输送化学反应的液体流动,其中的反应影响液体的流体性质。这种反应流出现在从生物系统到与能源使用相关的燃烧过程的各种应用中。一般来说,多物理系统的复杂性阻碍了对关键特征的直接实验观察。因此,他们的研究在很大程度上依赖于计算描述过程及其相互作用的数学模型的近似解。然而,这样的模拟使最强大的计算机的计算能力变得紧张,因此,近似中的计算误差总是很大的,甚至可能是压倒性的。二十多年来,项目研究人员开发了一种系统的方法,用于对多物理系统模型的近似解的误差产生准确的计算估计。在这个项目中,研究人员探索使用这种方法的误差估计来指导计算资源的有效使用,以最大限度地提高多物理系统近似解的保真度。他们还应用误差估计来准确量化基于模型近似解预测多物理系统行为的不确定性。该项目的结果将增强国家工程师和科学家调查和预测对国家安全和基础设施至关重要的复杂物理系统行为的能力。该项目解决了使用先进的尖端多重离散化数值方法进行多尺度、多物理模型以追求科学推理和工程设计的关键问题。这项研究是基于对多物理、多离散化问题的后验误差分析,通过使用伴随问题和可计算残差来量化各种离散化步骤的影响。该项目的主要重点有两个:(1)开发和分析使用准确的误差估计来指导离散化选择的方法,以便在大致最小的计算成本下获得所需的精度;(2)研究如何扩展准确的误差估计方法来解决多物理系统的不确定性量化,其中“离散化”包括对随机过程的抽样,总误差是离散化和抽样误差的组合。研究人员致力于开发新的多阶段方法来构建有效的数值解,并将后验误差分析扩展到统计计算。该项目还涉及将后验误差分析理论扩展到双曲问题和感兴趣的非标准量。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Least-Squares Finite Element Reduced Basis Method
最小二乘有限元降基法
- DOI:10.1137/20m1323552
- 发表时间:2021
- 期刊:
- 影响因子:3.1
- 作者:Chaudhry, Jehanzeb H.;Olson, Luke N.;Sentz, Peter
- 通讯作者:Sentz, Peter
A posteriori analysis of an IMEX entropy-viscosity formulation for hyperbolic conservation laws with dissipation
具有耗散的双曲守恒定律的 IMEX 熵粘度公式的后验分析
- DOI:10.1016/j.apnum.2018.08.010
- 发表时间:2019
- 期刊:
- 影响因子:2.8
- 作者:Chaudhry, Jehanzeb H.;Shadid, John N.;Wildey, Timothy
- 通讯作者:Wildey, Timothy
A posteriori error analysis for Schwarz overlapping domain decomposition methods
- DOI:10.1007/s10543-021-00864-1
- 发表时间:2019-07
- 期刊:
- 影响因子:1.5
- 作者:J. Chaudhry;D. Estep;S. Tavener
- 通讯作者:J. Chaudhry;D. Estep;S. Tavener
Error estimation and uncertainty quantification for first time to a threshold value
首次达到阈值的误差估计和不确定性量化
- DOI:10.1007/s10543-020-00825-0
- 发表时间:2021
- 期刊:
- 影响因子:1.5
- 作者:Chaudhry, Jehanzeb H.;Estep, Donald;Stevens, Zachary;Tavener, Simon J.
- 通讯作者:Tavener, Simon J.
An A Posteriori Error Analysis for the Equations of Stationary Incompressible Magnetohydrodynamics
定态不可压缩磁流体动力学方程的后验误差分析
- DOI:10.1137/20m1342975
- 发表时间:2021
- 期刊:
- 影响因子:3.1
- 作者:Chaudhry, Jehanzeb H.;Rappaport, Ari E.;Shadid, John N.
- 通讯作者:Shadid, John N.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jehanzeb Chaudhary其他文献
Jehanzeb Chaudhary的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 10.02万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 10.02万 - 项目类别:
Standard Grant
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
- 批准号:
AH/X011747/1 - 财政年份:2024
- 资助金额:
$ 10.02万 - 项目类别:
Research Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
- 批准号:
502555 - 财政年份:2024
- 资助金额:
$ 10.02万 - 项目类别:
Translational Design: Product Development for Research Commercialisation
转化设计:研究商业化的产品开发
- 批准号:
DE240100161 - 财政年份:2024
- 资助金额:
$ 10.02万 - 项目类别:
Discovery Early Career Researcher Award
Understanding the experiences of UK-based peer/community-based researchers navigating co-production within academically-led health research.
了解英国同行/社区研究人员在学术主导的健康研究中进行联合生产的经验。
- 批准号:
2902365 - 财政年份:2024
- 资助金额:
$ 10.02万 - 项目类别:
Studentship
XMaS: The National Material Science Beamline Research Facility at the ESRF
XMaS:ESRF 的国家材料科学光束线研究设施
- 批准号:
EP/Y031962/1 - 财政年份:2024
- 资助金额:
$ 10.02万 - 项目类别:
Research Grant
FCEO-UKRI Senior Research Fellowship - conflict
FCEO-UKRI 高级研究奖学金 - 冲突
- 批准号:
EP/Y033124/1 - 财政年份:2024
- 资助金额:
$ 10.02万 - 项目类别:
Research Grant
UKRI FCDO Senior Research Fellowships (Non-ODA): Critical minerals and supply chains
UKRI FCDO 高级研究奖学金(非官方发展援助):关键矿产和供应链
- 批准号:
EP/Y033183/1 - 财政年份:2024
- 资助金额:
$ 10.02万 - 项目类别:
Research Grant
TARGET Mineral Resources - Training And Research Group for Energy Transition Mineral Resources
TARGET 矿产资源 - 能源转型矿产资源培训与研究小组
- 批准号:
NE/Y005457/1 - 财政年份:2024
- 资助金额:
$ 10.02万 - 项目类别:
Training Grant














{{item.name}}会员




