SBIR Phase I: Artificial Intelligence, Scientific Reasoning, and Formative Feedback: Structuring Success for STEM Students
SBIR 第一阶段:人工智能、科学推理和形成性反馈:为 STEM 学生构建成功
基本信息
- 批准号:1721749
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This SBIR Phase I project uses artificial intelligence techniques to identify the ways that undergraduate students in scientific courses explicate problems, describe procedures, make claims, provide evidence, offer qualifications, and draw conclusions. With emphasis on forms of scientific reasoning, this new use of artificial intelligence, to identify language patterns associated with scientific reasoning, will allow students to improve their written laboratory reports before they are submitted, therefore freeing instructors to devote precious instructional time to preparing students for roles as practicing scientists. As the U.S. continues to experience rapid diversity growth, this focus on helping students through innovative uses of technology holds the potential to expand science education by cultivating student ability through autonomous writing and revision. Because artificial intelligence techniques are intended to expand capabilities, the techniques being used, available 24/4 on the web, will have the direct impact of growing our technical and scientific workforce, thus expanding the many dynamic pathways to STEM occupations. As the NSF observed in 2015 in its report Revisiting the STEM Workforce, these jobs are extensive and critical to innovation and competitiveness and are essential to the mutually reinforcing goals of individual and national prosperity and competitiveness. An investment in such a technology is thus an investment in national competitiveness, education policy, innovation, and workforce diversity.NSF SBIR support will be used to design and launch artificial intelligence techniques based on Deep Artificial Neural Network (DANN) as driven by Natural Language Processing (NLP), Latent Semantic Analysis (LSA), and the latest advances in AI algorithms. Because NLP and LSA techniques are presently used solely to identify grammatical and organizational patterns, the application of DANN is high risk in making a leap from identifying patterns of language use to capturing patterns of scientific reasoning. Trained on a proprietary corpus of 100,000 lab reports scored and annotated by instructors and students using a single rubric, the AI application will identify logic structures of scientific reasoning in student laboratory reports. Once methodically identified, categorized according to ability level, and validated by STEM instructors, digital instruction will be used to help students improve their scientific reasoning processes. With the singular goal of structuring student success through asynchronous machine learning, this innovation holds the promise to figure meaningfully in discussions of national competitiveness, education policy, innovation, and diversity as related to STEM education.
这个SBIR第一阶段项目使用人工智能技术来确定本科生在科学课程中解释问题,描述程序,提出索赔,提供证据,提供资格和得出结论的方式。强调科学推理的形式,人工智能的这种新用途,以识别与科学推理相关的语言模式,将允许学生在提交之前改进他们的书面实验室报告,从而使教师能够将宝贵的教学时间用于培养学生作为实践科学家的角色。随着美国继续经历快速的多样性增长,这种通过创新使用技术来帮助学生的做法有可能通过自主写作和修改来培养学生的能力,从而扩大科学教育。由于人工智能技术旨在扩展能力,因此在网络上24/4可用的技术将对我们的技术和科学劳动力的增长产生直接影响,从而扩大了许多通往STEM职业的动态途径。正如美国国家科学基金会在2015年的报告《重新审视STEM劳动力》中指出的那样,这些工作对创新和竞争力至关重要,对个人和国家繁荣和竞争力的相互促进目标至关重要。NSF SBIR支持将用于设计和推出基于深度人工神经网络(DANN)的人工智能技术,该技术由自然语言处理(NLP)、潜在语义分析(LSA)和人工智能算法的最新进展驱动。由于NLP和LSA技术目前仅用于识别语法和组织模式,因此DANN的应用在从识别语言使用模式到捕获科学推理模式的飞跃中具有很高的风险。在由教师和学生使用单个标题评分和注释的100,000份实验室报告的专有语料库上进行训练,AI应用程序将识别学生实验室报告中科学推理的逻辑结构。一旦系统地识别,根据能力水平分类,并由STEM教师验证,数字教学将用于帮助学生提高他们的科学推理过程。通过异步机器学习构建学生成功的单一目标,这一创新有望在与STEM教育相关的国家竞争力,教育政策,创新和多样性的讨论中发挥有意义的作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Norbert Elliot其他文献
Direct Assessment of Information Literacy using Writing Portfolios
- DOI:
10.1016/j.acalib.2007.03.005 - 发表时间:
2007-07-01 - 期刊:
- 影响因子:
- 作者:
Davida Scharf;Norbert Elliot;Heather A. Huey;Vladimir Briller;Kamal Joshi - 通讯作者:
Kamal Joshi
Automated scoring in context: Rapid assessment for placed students
- DOI:
10.1016/j.asw.2012.10.001 - 发表时间:
2013-01-01 - 期刊:
- 影响因子:
- 作者:
Andrew Klobucar;Norbert Elliot;Perry Deess;Oleksandr Rudniy;Kamal Joshi - 通讯作者:
Kamal Joshi
Big science or bricolage: an alternative model for research in technical communication
大科学还是拼凑:技术传播研究的另一种模式
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:1.7
- 作者:
N. Coppola;Norbert Elliot;Berkeley And Brazil - 通讯作者:
Berkeley And Brazil
Norbert Elliot的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
ATLAS实验探测器Phase 2升级
- 批准号:11961141014
- 批准年份:2019
- 资助金额:3350 万元
- 项目类别:国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
- 批准号:41802035
- 批准年份:2018
- 资助金额:12.0 万元
- 项目类别:青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
- 批准号:61675216
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Phase-type分布的多状态系统可靠性模型研究
- 批准号:71501183
- 批准年份:2015
- 资助金额:17.4 万元
- 项目类别:青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
- 批准号:51201142
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
- 批准号:11101428
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
- 批准号:19374069
- 批准年份:1993
- 资助金额:6.4 万元
- 项目类别:面上项目
相似海外基金
SBIR Phase II: A Manufacturing Monitoring System Using Sound Spectrograms and Artificial Intelligence
SBIR 第二阶段:使用声谱图和人工智能的制造监控系统
- 批准号:
2335395 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Cooperative Agreement
SBIR Phase I: A web portal for artificial intelligence (AI)-based comprehensive discovery of repositioning drugs
SBIR 第一阶段:基于人工智能 (AI) 的重新定位药物综合发现门户网站
- 批准号:
2334510 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: Artificial Gravity Stabilization System for Space Habitats
SBIR 第一阶段:太空栖息地人工重力稳定系统
- 批准号:
2335173 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: VoxCare: Artificial Intelligence-based Monitoring for Substance Use Indicators in Youth
SBIR 第一阶段:VoxCare:基于人工智能的青少年药物使用指标监测
- 批准号:
2335605 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: An Artificial Intelligence System to Accelerate Semiconductor Production using Physics-embedded Lithographic Foundation Model
SBIR 第一阶段:使用物理嵌入式光刻基础模型加速半导体生产的人工智能系统
- 批准号:
2336079 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: Development of novel artificial intelligence (AI)-enabled, non-invasive, heart attack diagnostics
SBIR 第一阶段:开发新型人工智能 (AI) 支持的非侵入性心脏病诊断
- 批准号:
2208248 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase II: Arctic Environmental Modeling with Augmentation and Curation from an Artificial Intelligence Engine
SBIR 第二阶段:通过人工智能引擎进行增强和管理的北极环境建模
- 批准号:
2213136 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Cooperative Agreement
SBIR Phase I: Artificial Intelligence (AI)-enabled Personalized Employability Curriculum (APEC)
SBIR 第一阶段:人工智能 (AI) 支持的个性化就业能力课程 (APEC)
- 批准号:
2230864 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase II: A Blockchain Ecosystem for Encrypting Real World Data and Developing Artificial Intelligence to Optimize Pharmacy Prior Authorization
SBIR 第二阶段:用于加密现实世界数据和开发人工智能以优化药房预授权的区块链生态系统
- 批准号:
2200163 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Cooperative Agreement
SBIR Phase II: A Platform for Health Care Data Integration Using Blockchain and Artificial Intelligence
SBIR 第二阶段:使用区块链和人工智能的医疗保健数据集成平台
- 批准号:
2304102 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Cooperative Agreement