Classification of Methods for Bayesian Inverse Problems Governed by Partial Differential Equations
偏微分方程治理贝叶斯反问题方法的分类
基本信息
- 批准号:1723211
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Inverse problems emerge in all areas of science, engineering, technology, and medicine. They provide a systematic and rigorous way to extract knowledge and insight from observational data. When this data corresponds to observations of natural or engineered systems that can be described by mathematical models, the properties and structure of the inverse problem depend on the properties of these models, which commonly involve partial differential equations (PDEs). It is crucial that efficient inverse problem solution methods exploit these properties. This is in particular the case when the inversion parameters are high (or infinite) dimensional, when the mathematical models are given by PDEs, and when one is interested in quantifying the uncertainty in the parameters, as is important in many applications.This project will systematically study properties and develop algorithms for three inverse problems that are representative of a wide class of Bayesian inverse problems governed by PDEs: (1) a parabolic inverse problem with spatially (and temporally) well-separated parameter and observation locations, (2) an elliptic Stokes flow problem for which a rich set of measurement data are available and the locations corresponding to parameters and observations are not well-separated, and (3) a hyperbolic problem with sparse point measurements. The PI will study these problems theoretically, develop and classify structure-exploiting methods to approximate their solutions, and implement these methods in an open-source software library. All three prototype problems have important and societally relevant real-world, large-scale analogues. Thus, any algorithmic or theoretical findings obtained for the three model problems will have immediate benefit for these grand challenge inverse problems.
逆问题出现在科学、工程、技术和医学的所有领域。它们提供了一种系统和严格的方法来从观测数据中提取知识和见解。当这些数据对应于可以通过数学模型描述的自然或工程系统的观测时,反问题的性质和结构取决于这些模型的性质,这些模型通常涉及偏微分方程(PDE)。 有效的反问题求解方法利用这些属性是至关重要的。当反演参数高时,情况尤其如此(或无限)维,当数学模型由偏微分方程给出,当一个人有兴趣量化参数的不确定性,这在许多应用中是很重要的。这个项目将系统地研究属性和开发算法的三个反问题,这是广泛的一类贝叶斯反问题的偏微分方程的代表:(1)具有空间(和时间)分离的参数和观测位置的抛物型逆问题,(2)椭圆斯托克斯流问题,对于该椭圆斯托克斯流问题,可获得丰富的测量数据集,并且对应于参数和观测的位置没有分离,以及(3)具有稀疏点测量的双曲问题。PI将从理论上研究这些问题,开发和分类结构开发方法来近似解决方案,并在开源软件库中实现这些方法。 所有这三个原型问题都有重要的和社会相关的现实世界,大规模的类似物。因此,对于这三个模型问题获得的任何算法或理论发现将对这些大挑战逆问题具有直接的益处。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal experimental design under irreducible uncertainty for linear inverse problems governed by PDEs
由偏微分方程控制的线性反问题的不可约不确定性下的最优实验设计
- DOI:10.1088/1361-6420/ab89c5
- 发表时间:2020
- 期刊:
- 影响因子:2.1
- 作者:Koval, Karina;Alexanderian, Alen;Stadler, Georg
- 通讯作者:Stadler, Georg
Advanced Newton Methods for Geodynamical Models of Stokes Flow With Viscoplastic Rheologies
具有粘塑性流变学的斯托克斯流地球动力学模型的高级牛顿方法
- DOI:10.1029/2020gc009059
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Rudi, Johann;Shih, Yu‐hsuan;Stadler, Georg
- 通讯作者:Stadler, Georg
A comparative study of structural similarity and regularization for joint inverse problems governed by PDEs
- DOI:10.1088/1361-6420/aaf129
- 发表时间:2018-08
- 期刊:
- 影响因子:2.1
- 作者:B. Crestel;G. Stadler;O. Ghattas
- 通讯作者:B. Crestel;G. Stadler;O. Ghattas
Sparse Solutions in Optimal Control of PDEs with Uncertain Parameters: The Linear Case
- DOI:10.1137/18m1181419
- 发表时间:2018-04
- 期刊:
- 影响因子:0
- 作者:Chen Li-;G. Stadler
- 通讯作者:Chen Li-;G. Stadler
Extreme event probability estimation using PDE-constrained optimization and large deviation theory, with application to tsunamis
- DOI:10.2140/camcos.2021.16.181
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Shanyin Tong;E. Vanden-Eijnden;G. Stadler
- 通讯作者:Shanyin Tong;E. Vanden-Eijnden;G. Stadler
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Georg Stadler其他文献
Constraining Earth's nonlinear mantle viscosity using plate-boundary resolving global inversions.
使用板块边界解析全局反演来约束地球的非线性地幔粘度。
- DOI:
10.1073/pnas.2318706121 - 发表时间:
2024 - 期刊:
- 影响因子:11.1
- 作者:
Jiashun Hu;J. Rudi;M. Gurnis;Georg Stadler - 通讯作者:
Georg Stadler
Optimal quantum control of electron–phonon scatterings in artificial atoms
- DOI:
10.1016/j.physe.2005.05.029 - 发表时间:
2005-10-01 - 期刊:
- 影响因子:
- 作者:
Ulrich Hohenester;Georg Stadler - 通讯作者:
Georg Stadler
Sensitivity Analysis of the Information Gain in Infinite-Dimensional Bayesian Linear Inverse Problems
无限维贝叶斯线性逆问题信息增益的敏感性分析
- DOI:
10.1615/int.j.uncertaintyquantification.2024051416 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Abhijit Chowdhary;Shanyin Tong;Georg Stadler;A. Alexanderian - 通讯作者:
A. Alexanderian
Georg Stadler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Georg Stadler', 18)}}的其他基金
Collaborative Research: Forward and inverse models of global plate motions and plate interactions
合作研究:全球板块运动和板块相互作用的正向和逆向模型
- 批准号:
1646337 - 财政年份:2017
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
CDS&E: Collaborative Research: A Bayesian inference/prediction/control framework for optimal management of CO2 sequestration
CDS
- 批准号:
1507009 - 财政年份:2015
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Bayesian Methods for Sample Size Re-estimation
样本量重新估计的贝叶斯方法
- 批准号:
2884699 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Studentship
MPhil/PhD Statistics (Assessing inequality in the Criminal Justice System using novel causal inference methods and Bayesian spatial models)
硕士/博士统计学(使用新颖的因果推理方法和贝叶斯空间模型评估刑事司法系统中的不平等)
- 批准号:
2905812 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Studentship
CAREER: Advancing Efficient Global Optimization of Extremely Expensive Functions under Uncertainty using Structure-Exploiting Bayesian Methods
职业:使用结构利用贝叶斯方法在不确定性下推进极其昂贵的函数的高效全局优化
- 批准号:
2237616 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Bayesian Learning for Spatial Point Processes: Theory, Methods, Computation, and Applications
空间点过程的贝叶斯学习:理论、方法、计算和应用
- 批准号:
2412923 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
- 批准号:
2348163 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Use Bayesian methods to facilitate the data integration for complex clinical trials
使用贝叶斯方法促进复杂临床试验的数据集成
- 批准号:
10714225 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Computational methods for Bayesian clustering
贝叶斯聚类的计算方法
- 批准号:
2884420 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Studentship
Delivering training courses for environmental scientists - Bayesian methods for ecological and environmental modelling
为环境科学家提供培训课程——生态和环境建模的贝叶斯方法
- 批准号:
NE/Y003780/1 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Training Grant
Advanced Bayesian Methods for Generalized Choice Response Time Models of Decision-Making
用于决策的广义选择响应时间模型的高级贝叶斯方法
- 批准号:
2242962 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant