Special Conference on Set-Theoretic Topology
集合论拓扑特别会议
基本信息
- 批准号:1725093
- 负责人:
- 金额:$ 1.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-05-01 至 2018-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports participation in the Special Conference on Set-Theoretic Topology held at Auburn University in Auburn, Alabama, from Oct 20th to 22nd, 2017. The conference focuses on the advancement of research in topology and outreach in mathematics, with specific emphasis on set-theoretic topology. Set theory and general topology are fundamental mathematical disciplines, with common historical roots, and they serve as essential tools in many areas of mathematics. Set theoretic applications to topology have invigorated both fields since the proof of the independence of the continuum hypothesis fifty years ago, and the synergy between them continues to invigorate the field of set-theoretic topology. Techniques developed to solve central questions in the field were instrumental in the development of the method of forcing, combinatorial set theory, and Ramsey theory. Set-theoretical techniques are also fundamental in recent work on the structure of non-separable Banach spaces and the study of rings of continuous functions and topological vector spaces. Quite naturally, set-theoretic topology also is close to logic and has much in common with finite combinatorics and theoretical computer science in its study of partial orders, Boolean algebra, and continuous lattices.This conference will feature both three plenary talks and eighteen contributed research talks, as well as a session on open problems. This grant will be used to support travel for participants, especially for students, young researchers, women, and underrepresented groups. More information may be found on the conference website, https://sites.google.com/view/auburntopologyconference2017.
该奖项支持参加2017年10月20日至22日在亚拉巴马奥本的奥本大学举行的集合论拓扑特别会议。会议的重点是推进拓扑学研究和数学推广,特别强调集合论拓扑学。集合论和一般拓扑学是基本的数学学科,有着共同的历史根源,它们在数学的许多领域都是重要的工具。自50年前证明连续统假设的独立性以来,集合论在拓扑学中的应用已经扩展了这两个领域,它们之间的协同作用继续活跃着集合论拓扑学领域。为解决该领域的核心问题而开发的技术在强迫方法、组合集合论和拉姆齐理论的发展中发挥了重要作用。集合论技术也是不可分的Banach空间的结构和连续函数环和拓扑向量空间的研究的基础。很自然地,集合论拓扑学也接近逻辑,并在偏序,布尔代数和连续格的研究中与有限组合学和理论计算机科学有很多共同之处。本次会议将包括三个全体会议和十八个贡献的研究会谈,以及一个开放问题的会议。这笔赠款将用于支持参与者的旅行,特别是学生、年轻研究人员、妇女和代表性不足的群体。更多信息可在会议网站https://sites.google.com/view/auburntopologyconference2017上找到。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ziqin Feng其他文献
Directed sets of topology: Tukey representation and rejection
- DOI:
10.1007/s13398-023-01544-1 - 发表时间:
2024-01-05 - 期刊:
- 影响因子:1.600
- 作者:
Ziqin Feng;Paul Gartside - 通讯作者:
Paul Gartside
Unveiling the superior diagnostic efficacy of double-balloon endoscopy compared to small intestine dual-energy CT enterography in small bowel Crohn’s disease
- DOI:
10.1186/s12876-025-03695-4 - 发表时间:
2025-02-21 - 期刊:
- 影响因子:2.600
- 作者:
Ji Liu;Bingqing Yuan;Ziqin Feng;Yue Teng;Xueqin Pang;Fujuan Luan;Lanxiang Zhu;Yanjun Chen - 通讯作者:
Yanjun Chen
The Shape of Compact Covers
紧凑型封面的形状
- DOI:
10.1215/00192082-10592363 - 发表时间:
2024 - 期刊:
- 影响因子:0.6
- 作者:
Ziqin Feng;P. Gartside - 通讯作者:
P. Gartside
<em>P</em>-paracompact and <em>P</em>-metrizable spaces
- DOI:
10.1016/j.topol.2015.05.083 - 发表时间:
2015-08-15 - 期刊:
- 影响因子:
- 作者:
Ziqin Feng;Paul Gartside;Jeremiah Morgan - 通讯作者:
Jeremiah Morgan
Minimal size of basic families
- DOI:
10.1016/j.topol.2011.03.008 - 发表时间:
2011-06-01 - 期刊:
- 影响因子:
- 作者:
Ziqin Feng;Paul Gartside - 通讯作者:
Paul Gartside
Ziqin Feng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
WISEST Summer Research Program, SET Conference, Teacher Resource Development
WISEST 暑期研究计划、SET 会议、教师资源开发
- 批准号:
545402-2019 - 财政年份:2021
- 资助金额:
$ 1.2万 - 项目类别:
PromoScience
WISEST Summer Research Program, SET Conference, Teacher Resource Development
WISEST 暑期研究计划、SET 会议、教师资源开发
- 批准号:
545402-2019 - 财政年份:2020
- 资助金额:
$ 1.2万 - 项目类别:
PromoScience
Seventh European Set Theory Conference
第七届欧洲集合论会议
- 批准号:
1916607 - 财政年份:2019
- 资助金额:
$ 1.2万 - 项目类别:
Standard Grant
WISEST Summer Research Program, SET Conference, Teacher Resource Development
WISEST 暑期研究计划、SET 会议、教师资源开发
- 批准号:
545402-2019 - 财政年份:2019
- 资助金额:
$ 1.2万 - 项目类别:
PromoScience
WISEST Summer Research Program, SET Conference, Teacher's Appreciation Day
WISEST 暑期研究计划、SET 会议、教师答谢日
- 批准号:
501782-2016 - 财政年份:2018
- 资助金额:
$ 1.2万 - 项目类别:
PromoScience
WISEST Summer Research Program, SET Conference, Teacher's Appreciation Day
WISEST 暑期研究计划、SET 会议、教师答谢日
- 批准号:
501782-2016 - 财政年份:2017
- 资助金额:
$ 1.2万 - 项目类别:
PromoScience
WISEST Summer Research Program, SET Conference, Teacher's Appreciation Day
WISEST 暑期研究计划、SET 会议、教师答谢日
- 批准号:
501782-2016 - 财政年份:2016
- 资助金额:
$ 1.2万 - 项目类别:
PromoScience
WISEST Summer Research Program and SET Conference
WISEST 夏季研究计划和 SET 会议
- 批准号:
453658-2013 - 财政年份:2015
- 资助金额:
$ 1.2万 - 项目类别:
PromoScience