II-NEW: Scalable Software Defined Radio Network Testbed for Hybrid Measurement and Emulation

II-新:用于混合测量和仿真的可扩展软件定义无线电网络测试台

基本信息

  • 批准号:
    1730140
  • 负责人:
  • 金额:
    $ 85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Recent advancements in wireless network protocols offer opportunities in new research areas including algorithm design, spectrum optimization, throughput maximization, and wireless security. Each time wireless technologies evolve, additional testing and certification steps are required, and, in most cases, several rounds of such verification are needed. These steps are crucial to ensure the final product is indeed ready for public use. Wireless protocol and algorithm developers leverage highly-customizable software defined radio (SDR) nodes to create and improve their design. Although SDRs offer an ideal environment for testing using point-to-point wireless links, they incur an increased overhead to the user for when a large-scale network measurements involving multiple radios are required. At present, there does not exist, a remotely accessible testbed that would allow users to customize SDR applications and test their radios with controllable radio propagation (emulated, simulated, and over-the-air) channels. The testbed resulting from this project will achieve this goal, and in doing so, establish Drexel University as a leader in cybersecurity and telecommunication systems research. Upon completion of the project, the equipment will be locally and remotely shared with faculty, staff, and students in the research community for educational purposes.The testbed will consist of Ettus USRP SDR nodes (i.e. N210, X310) connected to an RFNest 16-port Wireless Channel Emulator from Intelligent Automation, Inc., which offers capabilities of providing highly controlled wireless environments for repeatable experiments. A hardware infrastructure will be developed to distribute radio frequency and timing cabling as well as to install these nodes on a ceiling scaffolding grid structure in Drexel's new laboratory space. A software infrastructure will be developed to allow for researchers to utilize the testbed for customized experiments involving emulated, simulated, and over-the-air wireless channels, where this unique combination of features have never been offered before. This infrastructure will require custom application programming interfaces (for interfacing with the SDRs, RFNest, host computers, and switches) and remote access interfaces (web GUI, ssh) to allow users to upload their custom hardware and software designs. By leveraging existing software platforms, the project will offer sophisticated experiment setup, measurement and data management tools as well as emulated network options. To add to the unique features of the testbed, Drexel's software defined communications (SDC) testbed, which offers on-the-fly scalability, will be ported to X310s and made available as a part of the project.
无线网络协议的最新进展为新的研究领域提供了机会,包括算法设计、频谱优化、吞吐量最大化和无线安全。每次无线技术发展,都需要额外的测试和认证步骤,在大多数情况下,还需要几轮这样的验证。这些步骤对于确保最终产品确实准备好供公众使用至关重要。无线协议和算法开发商利用高度可定制的软件定义无线电(SDR)节点来创建和改进其设计。虽然SDR为使用点对点无线链路进行测试提供了理想的环境,但当需要进行涉及多个无线电的大规模网络测量时,它们会增加用户的开销。目前,还不存在远程可访问的试验台,允许用户定制SDR应用程序,并使用可控的无线电传播(模拟、模拟和空中)信道测试他们的无线电。该项目产生的试验台将实现这一目标,并通过这样做,将德雷塞尔大学确立为网络安全和电信系统研究的领先者。项目完成后,这些设备将在本地和远程与研究社区的教职员工和学生共享,用于教育目的。测试床将由Ettus USRP SDR节点(即N210,x310)连接到来自智能自动化公司的RFNest 16端口无线通道仿真器,该仿真器提供为可重复实验提供高度受控的无线环境的能力。将开发一个硬件基础设施,以分布射频和定时布线,并将这些节点安装在Drexel新实验室空间的天花板脚手架网格结构上。将开发一个软件基础设施,允许研究人员利用试验台进行定制实验,涉及模拟、模拟和空中无线信道,其中这种独特的功能组合以前从未提供过。该基础设施将需要定制的应用程序编程接口(用于与SDR、RFNest、主机和交换机接口)和远程访问接口(网络图形用户界面、SSH),以允许用户上传他们的定制硬件和软件设计。通过利用现有的软件平台,该项目将提供复杂的实验设置、测量和数据管理工具以及模拟网络选项。为了增加试验床的独特功能,Drexel的软件定义通信(SDC)试验床提供动态可扩展性,将被移植到X310并作为项目的一部分提供。

项目成果

期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Radio Modulation Classification Using Deep Residual Neural Networks
Securing Wireless Communication via Hardware-Based Packet Obfuscation
通过基于硬件的数据包混淆保护无线通信
  • DOI:
    10.1007/s41635-019-00070-0
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chacko, James;Juretus, Kyle;Jacovic, Marko;Sahin, Cem;Kandasamy, Nagarajan;Savidis, Ioannis;Dandekar, Kapil R.
  • 通讯作者:
    Dandekar, Kapil R.
Mitigating RF jamming attacks at the physical layer with machine learning
通过机器学习减轻物理层的射频干扰攻击
  • DOI:
    10.1049/cmu2.12461
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Jacovic, Marko;Rey, Xaime Rivas;Mainland, Geoffrey;Dandekar, Kapil R.
  • 通讯作者:
    Dandekar, Kapil R.
Experimentation framework for wireless communication systems under jamming scenarios
  • DOI:
    10.1049/cps2.12027
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marko Jacovic;Michael J. Liston;Vasil Pano;G. Mainland;K. Dandekar
  • 通讯作者:
    Marko Jacovic;Michael J. Liston;Vasil Pano;G. Mainland;K. Dandekar
Software-Defined Radar Testbed for Multi-Target Tracking
用于多目标跟踪的软件定义雷达测试台
  • DOI:
    10.1109/radarconf2248738.2022.9764220
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Adhikari, Abhishek;Parihar, Sameer;Das, Sujoy;Jacovic, Marko;Trezza, Anthony;Pano, Vasil;Dandekar, Kapil R.
  • 通讯作者:
    Dandekar, Kapil R.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kapil Dandekar其他文献

Kapil Dandekar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kapil Dandekar', 18)}}的其他基金

NeTS: Small: Functional Fabric Devices and Architectures for the Internet of Things
NeTS:小型:物联网的功能性结构设备和架构
  • 批准号:
    1816387
  • 财政年份:
    2018
  • 资助金额:
    $ 85万
  • 项目类别:
    Standard Grant
MRI: Development of a mmWave Software Defined Radio Network Testbed for Hybrid Measurement and Emulation
MRI:开发用于混合测量和仿真的毫米波软件定义无线电网络测试台
  • 批准号:
    1828236
  • 财政年份:
    2018
  • 资助金额:
    $ 85万
  • 项目类别:
    Standard Grant
SaTC: EDU: Software Defined Radio Wars for Cybersecurity and Information Assurance Education
SaTC:EDU:网络安全和信息保障教育的软件定义无线电战争
  • 批准号:
    1723606
  • 财政年份:
    2017
  • 资助金额:
    $ 85万
  • 项目类别:
    Standard Grant
EAGER: SC2: Team Dragon Radio
EAGER:SC2:龙队电台
  • 批准号:
    1738070
  • 财政年份:
    2017
  • 资助金额:
    $ 85万
  • 项目类别:
    Standard Grant
WiFiUS: Collaborative Research: Future Small-Cell Networks Using Reconfigurable Antennas
WiFiUS:合作研究:使用可重新配置天线的未来小蜂窝网络
  • 批准号:
    1457306
  • 财政年份:
    2015
  • 资助金额:
    $ 85万
  • 项目类别:
    Standard Grant
NeTS: Small: Enhanced Interference Alignment for Networks using Reconfigurable Antennas
NeTS:小型:使用可重新配置天线增强网络干扰对准
  • 批准号:
    1422964
  • 财政年份:
    2014
  • 资助金额:
    $ 85万
  • 项目类别:
    Standard Grant
PFI: BIC Wearable Smart Textiles Based on Programmable and Automated Knitting Technology for Biomedical and Sensor Actuation Applications
PFI:基于可编程和自动化针织技术的 BIC 可穿戴智能纺织品,适用于生物医学和传感器驱动应用
  • 批准号:
    1430212
  • 财政年份:
    2014
  • 资助金额:
    $ 85万
  • 项目类别:
    Standard Grant
Capacity Building: Development and Dissemination of the Drexel University Cybersecurity Program
能力建设:德雷塞尔大学网络安全计划的开发和传播
  • 批准号:
    1241631
  • 财政年份:
    2012
  • 资助金额:
    $ 85万
  • 项目类别:
    Standard Grant
A Meso-Scale GENI WiMAX Project
中观规模 GENI WiMAX 项目
  • 批准号:
    1138949
  • 财政年份:
    2011
  • 资助金额:
    $ 85万
  • 项目类别:
    Standard Grant
Reconfigurable Antenna-based Enhancement of Dynamic Spectrum Access Algorithms
基于可重构天线的动态频谱接入算法增强
  • 批准号:
    1147838
  • 财政年份:
    2011
  • 资助金额:
    $ 85万
  • 项目类别:
    Standard Grant

相似海外基金

SHF: Small: QED - A New Approach to Scalable Verification of Hardware Memory Consistency
SHF:小型:QED - 硬件内存一致性可扩展验证的新方法
  • 批准号:
    2332891
  • 财政年份:
    2024
  • 资助金额:
    $ 85万
  • 项目类别:
    Standard Grant
ECCS-EPSRC: A new generation of cost-effective, scalable and stable radiation detectors with ultrahigh detectivity
ECCS-EPSRC:具有超高探测率的新一代经济高效、可扩展且稳定的辐射探测器
  • 批准号:
    EP/Y032942/1
  • 财政年份:
    2024
  • 资助金额:
    $ 85万
  • 项目类别:
    Research Grant
ECCS-EPSRC: A new generation of cost-effective, scalable and stable radiation detectors with ultrahigh detectivity
ECCS-EPSRC:具有超高探测率的新一代经济高效、可扩展且稳定的辐射探测器
  • 批准号:
    2313755
  • 财政年份:
    2023
  • 资助金额:
    $ 85万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
  • 批准号:
    2347617
  • 财政年份:
    2023
  • 资助金额:
    $ 85万
  • 项目类别:
    Standard Grant
CCRI: New: Incubating egg: Developing a Scalable, Cohesive Equality Saturation Ecosystem and Community
CCRI:新:孵化蛋:开发可扩展、有凝聚力的平等饱和生态系统和社区
  • 批准号:
    2232339
  • 财政年份:
    2023
  • 资助金额:
    $ 85万
  • 项目类别:
    Standard Grant
Collaborative Research: Accelerated Development of New, Scalable pH Sensors for Global Ocean Observational Networks
合作研究:加速开发用于全球海洋观测网络的新型可扩展 pH 传感器
  • 批准号:
    2300400
  • 财政年份:
    2023
  • 资助金额:
    $ 85万
  • 项目类别:
    Continuing Grant
Collaborative Research: Accelerated Development of New, Scalable pH Sensors for Global Ocean Observational Networks
合作研究:加速开发用于全球海洋观测网络的新型可扩展 pH 传感器
  • 批准号:
    2300399
  • 财政年份:
    2023
  • 资助金额:
    $ 85万
  • 项目类别:
    Continuing Grant
Collaborative Research: Accelerated Development of New, Scalable pH Sensors for Global Ocean Observational Networks
合作研究:加速开发用于全球海洋观测网络的新型可扩展 pH 传感器
  • 批准号:
    2300401
  • 财政年份:
    2023
  • 资助金额:
    $ 85万
  • 项目类别:
    Continuing Grant
NEW AND SCALABLE PARADIGMS FOR DATA-DRIVEN MODEL PREDICTIVE CONTROL
数据驱动模型预测控制的新的、可扩展的范式
  • 批准号:
    2315963
  • 财政年份:
    2023
  • 资助金额:
    $ 85万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
  • 批准号:
    2213701
  • 财政年份:
    2022
  • 资助金额:
    $ 85万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了